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Abstract

Traditional operating systems control the sharing of
the processor resources among processes using a fized
scheduling policy based on the utilization of a computer
system such as real-time or timesharing systems. Since
the control over the processor allocation is based on a
fized policy, not based on processes’ execution behav-
tor, this can hinder an effective use of a processor or
can extend the processing time of a process unnecessar-
tly. Thus, we proposed a couple of process scheduling
policies which respond to processes’ execution behavior.
One of these policies is the policy for improving a Web
server’s response time. This policy controls multiple
processes of a Web server by adjusting the execution
of these processes according to their predicted behavior.
And we evaluated the performance of a Web server us-
ing this policy in simple cases.

In this paper, we evaluate the performance of a Web
server when it 1s busy which is likely to be a realistic
case. This could be the case in which it 1s most de-
sirable to improve the response time of a Web server.
QOur experimental results show that the mean response
times are improved greatly (up to 33.8% in the best
case). They also show that the scheduling parameter
15 effectively predicted and updated by our mechanism
based on the Web server’s execution behavior.

1. Introduction

Traditional operating systems control the sharing of
the processor resources among processes using a fixed
scheduling policy based on the utilization of a com-
puter system such as real-time or timesharing systems.
A real-time system’s scheduling policy must be able to
analyze or handle data faster than they come in and
it must also respond to time events. There are many
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applications in which computations must be completed
before specified deadlines [4] and missing the specific
deadlines are catastrophic. Therefore, scheduling such
applications has been an important area of research in
real-time system (e.g., [1]-[8]) . A timesharing system’s
scheduling policy is to provide good response to inter-
active users. Many commonly-used systems such as
Unix, Mach, and Windows NT generally use conven-
tional priority-based timesharing schedulers [9].

Since traditional schedulers control the execution of
processes based on fixed policies, not based on pro-
cesses’ execution behavior, this can hinder an effective
use of a processor or can extend the processing time of
a process unnecessarily. For example, in timesharing
system, if a process does not complete before its quan-
tum (time-slice) expires, the processor is preempted
and given to the next waiting process. Thus, a pro-
cess that needs just a little bit more of processor time
will not be completed until its next quantum. Because
of this, the processing time and the context switching
cost of the process increase unnecessarily. If we had
predicted the process’s execution behavior and delayed
the process switch based on the predicted behavior that
the process needs a little bit more of processor time to
complete its job, then the extra costs mentioned above
would have been avoided.

Therefore, we proposed the idea called POS (Pro-
gram Oriented Schedule) [13]. The idea of POS is by
increasing operating system ability to alter the pro-
gram’s execution behavior, the operating system could
optimize program’s execution behavior allowing user
requirements (e.g., a performance enhancement) to be
satisfled without making any changes to the exist-
ing program. In order to grasp a program’s execu-
tion behavior, the idea of POS requires that the op-
erating system has the ability to observe the execu-
tion of processes, to log the execution results, and to
create/update the predicted behavior of the program
based on the log.



One function in Windows 98, which users can get
“faster program start up” as a performance enhance-
ment [11], uses an idea similar to that of POS. The
function improves the performance of a user’s pro-
grams based on observing usage habits of programs.
In other words, the function creates a log file to deter-
mine which programs user runs most frequently. All
such frequently used files are then placed in a single
location on the user’s hard disk, which further reduces
the time needed to start those programs [12].

We have already applied POS to the process sched-
uler [13, 14]. In [13], we proposed the process schedul-
ing policy that controls the time-slice length of the ob-
ject process in order to minimize its processing time
and /or its context switching cost. However, the target
programs of this policy are the programs that consist
of only a single process. So, we extended our work to
the programs composed of multiple processes such as
servers. Server performance is crucial to client/server
applications [10]. We used a Web server as a sample
server and proposed the process scheduling policy for
improving response time of a Web server [14]. We also
evaluated the performance of a Web server when using
this policy in simple cases, such as when the number
of browsers accessing the Web server ranged from 1
to 3 and just two machines (client machine and server
machine) were used.

In this paper, we evaluate the performance of a Web
server when it is busy, i.e., when it 1s accessed by a lot
of browsers at the same time which is likely to be a
realistic case. This could be the case in which it is most
desirable to improve the response time of a Web server.
Our experimental results show that the mean response
times are improved greatly (up to 33.8% in the best
case). They also show that the scheduling parameter
is effectively predicted and updated by our mechanism
based on the Web server’s execution behavior.

The rest of the paper is organized as follows. Section
2 gives an easy example to show how the performance
of a program will be improved when POS is applied to
the process scheduler. Section 3 briefly overviews how
we observe and alter a Web server’s execution behav-
ior. Section 4 discusses the results of three quantitative
experiments. Section 5 summarizes our conclusions.

2. An Efficient Example of POS

We used an easy example shown in Figure 1 to iden-
tify how performance will be improved when POS is
applied to the process scheduler. In Figure 1, pro-
cess A and process B need respectively 3.4 seconds
and 2.1 seconds of processor time to accomplish their
jobs. Both processes have the same priority and the
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time-slice is 1 second. Figure 1(a) shows the process-
ing times of process A and process B when using a
traditional priority-based timesharing scheduler. The
processing times of process A and process B are 5.5 sec-
onds and 4.1 seconds respectively. On the other hand,
Figure 1(b) shows the processing times of process A
and process B when POS is applied. Based on the pre-
dicted behavior that process B needs only 0.1 seconds
more of processor time and then process B will finish
its job, the process scheduler delays the process switch
0.1 seconds to allow process B to finish its job. De-
laying the process switch causes the processing time of
process B to be reduced to 3.1 seconds while that of
process A is still the same as in Figure 1(a). Moreover,
the context switching cost of process B also decreases.

This example also shows how the process schedul-
ing policy, we proposed in [13], controls the time-slice
length of the object process, and how the processing
time and/or context switching cost of the object pro-
cess will decrease when using this policy.

time-slice 1 second
—

0 1 2 3 4 6
t t t t t t >time
process A —,  (second)
5.5 seconds
process B — -
4.1 seconds
(a) normal process switch
processA —— —
55 lo!
Seconas H 0.1 seconds delay
process B — —
3.1 seconds

(b) delayed process switch

Figure 1. An Effcient Example of POS.

3. Overview

We observe the Web server’s execution behavior, log
the execution results, and create/update the predicted
behavior called PFS (Program Flow Sequence) through
the logging mechanism. And we alter the Web server’s
execution behavior by using the process control mech-
anism. Both mechanisms are integrated into the oper-
ating system.



3.1. logging mechanism

When a Web server is running, a log is collected
recording the information necessary to determine the
optimal execution. A log is a sequence of entries
describing process identifier, process state and time.
Then a sequence called PFS, which we use to predict
behavior, is created or updated for each process. Note
that a Web server is normally composed of multiple
processes. PFS is a sequence of entries describing pro-
cess state and time spent.

3.2. process control mechanism

For this paper, the content of a Web page is pretty
simple, that is, one which is composed of text data and
image data only. Text data and image data are sep-
arately saved in a file written in HTML (HTML file)
and an image-formatted file (Image file) respectively.
After making a request for a Web page, the browser
will interpret and process the HTML file sent back by
the Web server it requested and then display the text
data. During the interpretation, if the Web page is also
composed of image data, then the browser will request
the Web server again for the Image file. When a Web
site becomes busy (i.e., when a Web server is accessed
by a lot of browsers), it takes time even for the text
data which is normally much smaller than image data
to show up on browsers. This kind of situation could
cause users to give up waiting or to get tired of access-
ing such popular Web sites. So, while a Web site is
busy, we thought that it is much better if the text data
shows up on any browsers relatively faster. Therefore,
we considered improving the time from requesting a
Web page until text data displays (response time).

Most processes, except the currently executing pro-
cess (i.e., process that is in the run state), are in one of
two queues: a ready queue or a sleep queue. Processes
that are waiting for the processor to become available
(i.e., in the ready state) are placed on a ready queue,
whereas processes that are blocked awaiting an event
(i.e., in the wait state) are located on a sleep queue
associated with the event. When a process is blocked
awaiting an event to happen, if the resources (e.g., a
hard disk) needed for the event are being used by any
other process, then that process needs to wait first for
those resources to become available. Next, that pro-
cess needs to wait again for the operation (e.g., in-
put/output) it initiated to be completed. By reducing
the time waiting for the processor to become available
at a ready queue or for the resource needed for an event
to become available at a sleep queue, we can achieve
enhanced response time. According to this, we pro-
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posed the policy that when a processor (a hard disk or
a network communication) becomes bottlenecked, any
server process handling an HTML file be moved to the
head of the ready queue (sleep queue associated with
the event) [14].

When we discussed the process control mechanism
that implements the above policy focused on the bot-
tleneck of the processor [14], we had two problems: how
to detect which processes are server processes handling
HTML files, and how to operate the ready queue.

To answer these questions we found that we needed
to look at the detailed behavior of a Web server. We
analyzed the Web server’s processes behavior based on
PFS and found out that any server process handling an
HTML file has 2 characteristics: it runs after waiting
for a long time in the wait state (characteristic 1) and
it tends to cycle between run state and wait state fewer
times than that of server process handling an Image file
(characteristic 2).

To deal with the fist problem, we introduced two
parameters into our process control mechanism in or-
der to determine which processes are server processes
handling HTML files: long wait threshold (its value
is denoted by SLP) and run state/wait state thresh-
old (its value is denoted by RW). If the time spent by
a process in the wait state before moving to the run
state is more than SLP, and the number of times the
process changes between run state and wait state is less
than RW, then we determine that it is an server pro-
cess handling an HTML file. By these parameters, we
can detect which process appears to be a server process
handling an HTML file.

To deal with the second problem, our process control
mechanism puts any process that has characteristic 1
at the head of ready queue and moves that process to
the back of the ready queue when that process loses
characteristic 2. The reason processes that lose char-
acteristic 2 are moved to the back of the ready queue
is that sometimes server processes handling Image files
are mistaken as server processes handling HTML files
because they exhibit characteristic 1.

How to predict and update SLP and RW is described
below.

1. How to predict and update SLP:

We analyzed the Web server’s execution behavior
based on PFS and found that a server process
handling an HTML file is the process that waits
for a request from a browser. The time it waits
for a request is relatively long. Therefore, the
longest time of each server process in the wait
state is determined from PFS for each period,
then SLP for the next time period is set to the



smallest of these values. SLP is updated every
time period.

2. How to predict and update RW:

We analyzed the Web server’s execution behav-
ior based on PFS and found that the number of
times a server process handling an HTML file or
Image file changes between run state and wait
state is proportional to the size of the HTML file
and Image file respectively. In fact, the num-
ber of times a server process handling an Image
file changes between run state and wait state is
greater than that of a server process handling
an HTML file, because in general Image files are
bigger than HTML files. Therefore, the smallest
number of times of each server process changing
between run state and wait state is determined
from PFS for each period, then RW for the next
time period is set to the greatest of these values.
RW is updated every time period.

4. Performance

In this section, we present experiments designed to
evaluate the effectiveness of the process control mech-
anism we designed. We start with a description of the
experimental setup, and proceed to present the results
of three experiments.

4.1. Experimental Setup

The software used for the Web server and the
browser in our experiment was Apache version 1.2.5
and Netscape Navigator version 3.04 respectively. The
Web server ran on the personal computer with a 233
MHz AMD-K6 processor and 64 MB of memory, while
browsers ran on three personal computers, each with
a 200MHz Intel Pentium Pro processor and 64 MB of
memory. All machines were running on BSD/OS ver-
sion 2.1 in single user mode and were connected by
a private 10Mb/s Ethernet. During the experiment,
the operating system’s 1/O buffer cache in the server
machine and each browser’s cache were disabled in or-
der to see the effect of our process control mechanism
clearly.

The Web server was accessed by three browsers from
each of the three machines at the same time. All
browsers accessed unique URLs all of which have the
same content. In three different experiments in which
we varied RW in the range from 1 to 10, we measured
the time (t1) from requesting a Web page until text
data starts displaying and the time (t2) from request-
ing a Web page until image data displays completely
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for each access, and then found the mean of the 5 trial
times of t1 (response time of text data) and t2 (re-
sponse time of image data). In experiment 1, all the
browsers accessed the Web server simultaneously ev-
ery 30 seconds when the Web server coexisted with a
processor-bound process and SLP was fixed at 20 sec-
onds. The purpose of this experiment is to know how
the response time of text data would be improved in the
situation that is the best for our process control mech-
anism (i.e., the server machine’s processor is bottle-
necked [caused by a coexisting processor-bound process
in this experiment] and SLP is set to be predicted 100%
correctly). In experiment 2, all the browsers accessed
the Web server randomly at the same time and SLP
was fixed at 20 seconds, while in experiment 3, SLP was
predicted and updated automatically based on PFS ev-
ery 500 milliseconds. There was no processor-bound
process in experiments 2 and 3. The purposes of exper-
iments 2 and 3 are to know how the response times of
text data in the more realistic case would be improved
when SLP was fixed and when SLP dynamically varies
according to the Web server’s execution behavior re-
spectively.

4.2. Experimental Result

Figure 2 shows some examples of the results of ex-
periment 1, when not using and using our process con-
trol mechanism (RW = 3,6,9). Figure 2 plots the URLs
in numerical sequence on the y-axis against the re-
sponse time of text data to a request in seconds. Figure
2 shows that the smallest and biggest response times
when RW = 3,6,9 are better than when not using our
process control mechanism. It also shows that the
range or the distribution of response times becomes
narrower when using our process control mechanism.

Figure 3(a) illustrates the mean and the range of
response times of text data from Figure 2 into one
graph. This figure shows that the mean response time
of text data when RW = 3,6,9 are improved 33.8%,
21.3% and 26.6% respectively calculated by 4= x 100%
where a and b are the mean response times when not
using and using our process control mechanism respec-
tively. This case produced the best improvement of
the response time of text data, because the coexisting
processor-bound process always caused the processor
to become bottlenecked and the server processes wait-
ing for HTML files requests from browsers were always
in the wait state at least 30 seconds which was more
than SLP (20 seconds).

The rest of the experimental results will be shown
like Figure 3(a).

Figure 3(b) illustrates the mean and the range of



response times of image data to a request in seconds.
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Figure 5 shows the results of experiment 3, when not
using and using our process control mechanism (RW =
3,6,9). Figures 5(a) and 5(b) illustrate the mean and
the range of response times of text data and image
data to a request in seconds respectively. Figure 5(a)
shows that the smallest response times for RW = 6
and 9 are not better than when not using our process
control mechanism. This could be because sometimes
server processes handling Image files were mistaken as
server processes handling HTML files when they were
in the wait state more than predicted SLP. However,
the distribution of response times is narrower and the
mean response times of text data when RW = 3,6,9
are improved 22.2%, 17.9% and 6.7% respectively, be-
cause SLP was set and updated automatically every
500 milliseconds based on PFS (i.e., predicted SLP is
responsive to the Web server’s execution behavior). On
the other hand, the mean response times of image data
in Figure 5(b) are not so different from that when not
using our process control mechanism as in experiment
1 (See Figure 3(b)) because of mistaking server pro-
cesses handling Image files as server processes handling

HTML files.
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Figure 4. The Effect of Our Process Control
Mechanism in Experiment 2.
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The results of experiment 1 show that the mean re-
sponse times of text data are improve greatly (up to
33.8% when RW=3) when the processor of the server
machine is bottlenecked which is the condition that
our mechanism favors to and SLP is predicted 100%
correctly. The results of experiment 2 shows that the
mean response times of text data are not improved at
all when SLP is not responsive to the Web server’s exe-
cution behavior, while the mean response times of text
data in experiment 3 are improved (up to 22.2% when
RW=3) when SLP is responsive to the Web server’s
execution behavior. This means that SLP is effectively
predicted and updated by our mechanism based on
the Web server’s execution behavior. Moreover, even
though a processor-bound process causing the bottle-
neck of the server machine does not coexist in experi-
ment 3, our mechanism still produces a good improve-
ment. This might imply that a lot of accesses from
browsers at the same time could cause the processor of
the server machine to become bottlenecked.
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Figure 5. The Effect of Our Process Control
Mechanism in Experiment 3.



5. Conclusions

Since traditional schedulers control the execution of
processes based on fixed policies, not based on pro-
cesses’ execution behavior, this can hinder an effective
use of a processor or can extend the processing time
of a process unnecessarily. Therefore, we proposed the
idea called POS (Program Oriented Schedule). The
idea of POS is by increasing operating system ability
to alter the program’s execution behavior, the oper-
ating system could optimize program’s execution be-
havior allowing user requirements (e.g., a performance
enhancement) to be satisfied. We have already applied
this idea to the process scheduler and proposed a pol-
icy for improving a Web server’s response time. We
had also evaluated the performance of a Web server in
simple cases [14].

In this paper, we evaluated the performance of a
Web server when it is busy which is most likely to be
a realistic situation and could be the case in which
it 1s most desirable to improve the response time of
a Web server. Our experimental results show that
the mean response times are improve greatly (up to
33.8%) when the processor of the server machine is
bottlenecked caused by a coexisting processor-bound
process, and scheduling parameter SLP is predicted
100% correctly. They also show that even though a
processor-bound process does not coexist, our schedul-
ing mechanism still produces a good improvement (up
to 22.2%) when scheduling parameter SLP is predicted
and updated automatically by our mechanism based on
the Web server’s execution behavior. This means that
scheduling parameter SLP is effectively predicted and
updated by our mechanism based on the Web server’s
execution behavior.

Future work is required to evaluate the performance
of a Web server when scheduling parameter RW is au-
tomatically predicted and updated by our mechanism
and also when both scheduling parameter SLP and
RW are automatically predicted and updated by our
mechanism. It is important to evaluate our process
scheduling mechanism with a more complex Web en-
vironment such as a complicated Web page (consisting
of several images, sound, etc.). Also, the effectiveness
of our mechanism needs to be evaluated with regard to
processor load and number of accesses from browsers.
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