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ABSTRACT

Improving an operating system’s support for software
maintenance is, we believe, vital to our goal of reducing
the significant sum spent on adapting existing software to
changing user requirements, especially improving the
performance of software.  Therefore, we proposed the
idea that by increasing an operating system’s abilities to
observe a software’s execution behavior and evolve its
execution behavior using observed results, an operating
system could adapt existing software to changing user
requirements without making any modifications to the
software.  We have already integrated the above abilities
into CPU and disk scheduling mechanisms in an operating
system.  In this paper, we verify the usefulness of our idea
using existing software like a WWW (World Wide Web)
server, by examining its performance when using both our
CPU and disk scheduling mechanisms.
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1. INTRODUCTION

The magnitude of software maintenance cost is estimated
to comprise at least 50% of overall software life-cycle
cost [1][2][3].  And a large portion of this cost, over 50%,
is spent on changes to accommodate changing user
requirements.  Changes in user requirements are
inevitable.  Software models part of reality, and reality
changes.  So the software has to change too.  Keep this in
mind, our goal is to reduce the significant sum spent on
changing user requirements, especially performance
enhancement of software.  This goal could be achieved by
using the following idea.

Our idea is that by increasing an operating system’s
abilities to observe a software’s execution behavior and
evolve its execution behavior using observed results, an
operating system could adapt existing software to
changing user requirements without making any
modifications to the software.  In other words, by using
these abilities, an operating system could optimize a
software’s execution behavior allowing user requirements

to be satisfied without any modifications to the existing
software.

We have already integrated the above abilities into
resource scheduling mechanisms in an operating system
such as CPU and disk scheduling mechanisms.  We have
also verified the usefulness of our idea in some cases
using existing software, i.e., a WWW (World Wide Web)
server.  That is, we evaluated the performance of a WWW
server when using either scheduling mechanism by itself.
In either case, our mechanism alters the execution
behavior of a WWW server by giving preferential use of
the resource (i.e., the CPU resource or the disk drive) to
any process that is predicted to be a server process
handling an HTML (HyperText Markup Language) file
request.  This allows users to view the first data to display
on browsers, the text data stored in an HTML file, and the
general layout of a WWW page in a timely manner during
periods of high demand.  As a result, the user requirement,
the enhancement of response time when there is a heavy
demand on the server, can be satisfied without making
any changes to the existing server software.

In this paper, we present experimental evaluation of our
idea by examining the performance of a WWW server
when using both our CPU and disk scheduling
mechanisms.  And our result shows that the mean
response time is improved as much as 30%; this
percentage of improvement is better than when using
either mechanism by itself (both of which are about 20%).

The remainder of this paper is organized as follows.
Section 2 provides background information on the WWW.
Section 3 is a brief overview of our CPU and disk
scheduling mechanisms.  Section 4 describes our
experiment and explains the results we obtained.  Section
6 offers our conclusion and future work.

2. THE WWW

The WWW is based on the client-server model.  That is,
users access WWW pages provided by WWW servers via
WWW clients, mainly browsers.  WWW pages are
written in HTML and stored on a disk as text files called
HTML files.  An HTML file contains text data that users



will view and HTML tags that specify structure for the
text data as well as formatting hints.  Because an HTML
file uses a text representation, non-text data such as
images are not included directly in the HTML file.
Instead, a tag is placed in the HTML file to specify the
place at which an image should be inserted and the source
of the file that stores it (Image file).  HTML files and
Image files account for more than 90% of the total
requests to a server [4][5].  Therefore, the WWW page in
this paper consists of an HTML file and an Image file.

WWW clients.  A user can access the information on the
WWW by using a browser, such as Netscape Navigator,
Internet Explorer, or Mosaic.  When the user selects a
WWW page to retrieve (usually, by clicking a mouse on a
hyperlink), the browser creates a request to be sent to the
corresponding WWW server and then waits for a response.
When the response arrives, the browser interprets and
processes the HTML file sent back by the server, and then
displays the text data for the user to view.  During the
interpretation, if the WWW page also contains other types
of data such as an image, then the browser will request the
Image file from the WWW server.

WWW servers.  The purpose of a WWW server is to
provide WWW pages to WWW clients that request them.
The server software we used is Apache version 1.2.5 [6],
the pre-forking model server.  In this model, a master
process pre-forks a pool of child server processes to
handle requests.  However, the master process does not
handle any part of the request.  In this paper, we refer to
each child server process as a server process.

3. OVERVIEW

In this section, we will briefly describe our CPU and disk
scheduling policies and their aspects of implementation
[7][8] in order to provide sufficient understanding to the
rest of the paper.

3.1 SCHEDULING POLICIES

As the demand placed on a WWW server grows, the
number of simultaneous requests it must handle increases.
As a result, users see slower response times during
periods of high demand.  In other words, it takes a longer
time for the first data to display on browsers, the text data
stored in an HTML file, to start displaying when a WWW
server is accessed by many browsers simultaneously.
This situation could be one in which it is most desirable
for users to improve the response time of a WWW server,
since they tend to get frustrated if it takes a long time to
start viewing a WWW page.  Hence, in such a situation,
our scheduling goal is to display the text data for the user
to view as soon as possible while other types of data such
as an image are coming in, and also to allow the user to
stop loading if the page is not sufficiently interesting to

warrant waiting.  A method to achieve this goal is
described below.

Most processes, except the currently executing process
(i.e., process in the run state), are in one of two queues: a
ready queue or a sleep queue.  Processes that are waiting
for the CPU to become available (i.e., processes in the
ready state) are placed on a ready queue, whereas
processes that are blocked awaiting an event (i.e.,
processes in the wait state) are located on a sleep queue
associated with the event.  When a process is blocked
awaiting an event to happen such as the completion of its
I/O request, if the desired I/O device (e.g., a disk drive) is
available, the request can be serviced immediately.  If that
device is being used by any other process, then the
request will be put into the I/O queue for that device.  By
reducing the time a process waits for the CPU to become
available in the ready queue or the time its I/O requests
wait to be serviced in the I/O queue, we can reduce the
processing time of a process, which results in an enhanced
response time if that process is a server process handling
an HTML file request.  For this reason, we proposed the
following scheduling policies.

(1) When a CPU becomes bottlenecked, any server
process handling an HTML file request will be
moved to the head of the ready queue.

(2) When an I/O device becomes bottlenecked, any
I/O request generated by any server process
handling an HTML file request will be moved to
the head of the I/O queue for that device.

Note that the bottleneck mentioned in this paper is the
situation in which the resources are being used and there
is more than one process waiting to use the resources.

3.2 ASPECTS OF IMPLEMENTATION

When implementing the proposed scheduling policies
focused on the bottleneck of a CPU and a disk drive, we
had two problems: how to detect which processes are
server processes handling HTML file requests, and how to
operate the ready queue and the I/O queue.

To deal with the first problem, we first need to know
what a server process handling an HTML file request is
like.  So, we logged the execution behavior of a WWW
server in terms of process identifier, process state and
time.  And based on this log, we created the predicted
execution behavior called PFS (Program Flow Sequence)
for each server process.  PFS is a sequence of entries
describing process state and time spent.  We analyzed the
behavior of server processes based on PFS and found that
a server process handling an HTML file request is a
process that waits for a request from a browser, and the
time it waits for a request is relatively long compared with



the time waiting for other kinds of events to happen (e.g.,
the completion of an I/O request) in the wait state.  Also,
after accepting a request, it tends to change between run
state and wait state a number of times.  The number of
changes is proportional to the size of the file it handles,
i.e., an HTML file (which is usually smaller than an
Image file).  In other words, any server process handling
an HTML file request has two characteristics: after
waiting for a long time in the wait state (characteristic 1),
it tends to cycle between run state and wait state a number
of times but fewer times than that of a server process
handling an Image file request (characteristic 2).

Next, we introduced two parameters into our scheduling
mechanisms in order to determine which processes have
the above two characteristics (i.e., to determine which
processes are server processes handling HTML file
requests): long wait threshold (its value is denoted by
SLP) and run state/wait state threshold (its value is
denoted by RW).  If the time spent by a process in the
wait state before moving to the run state is more than SLP,
and the number of times the process changes between run
state and wait state is less than RW, then we determine
that it is a server process handling an HTML file request.
By these two parameters, we can detect which process
appears to be a server process handling an HTML file
request.  SLP and RW are automatically predicted and
updated every time period based on the predicted
execution behavior of each server process, i.e., PFS of
each server process.  We note that we cannot fix SLP and
RW at some values due to random accesses from users (in
the case of SLP), and the changing execution behavior of
the server and the size of the HTML files it handles (in
the case of RW).  Also, PFS is created and updated every
time period based on the log we collected when the
WWW server is running.  As mentioned, a log is a
sequence of entries describing process identifier, process
state and time.

To deal with the second problem, our CPU and disk
scheduling mechanisms give preferential use of the CPU
resource and the disk drive to any process that is predicted
based on its behavior to be a server process handling an
HTML file request, by moving it and its I/O requests to
the head of the waiting queue (i.e., the ready queue or
the I/O queue).  In other words, our scheduling
mechanisms put any process that has characteristic 1 and
also its I/O requests at the head of the waiting queue; and
when that process loses characteristic 2, it and its I/O
requests will be scheduled normally, i.e., that process and
its I/O requests will be respectively put into the ready
queue and the I/O queue using the routines provided by
the operating system, which in our case are the
roundrobin and the disksort routines.  Roundrobin enters
processes into the ready queue on a round-robin basis
while disksort enters I/O requests into the I/O queue in a
cyclic, ascending, cylinder order as described below.

An I/O queue is made up of one or two lists of requests
ordered by cylinder number.  The request at the front of
the first list indicates the current position of the drive.  If a
second list is present, it is made up of requests that lie
before the current position.  Each new request is sorted
into either the first or the second list, according to the
request’s location.  When the heads reach the end of the
first list, the drive begins servicing the other list.  Figure
1(a) shows an example of an I/O queue with requests for
I/O to blocks on cylinders 75, 30 and 120 when the
request at cylinder 100 is being serviced.  For comparison,
Figures 1(b) and (c) show respectively how disksort and
our disk scheduling mechanism enter the requests from a
server process handling an HTML file request on
cylinders 140 and 80, in addition to the requests
mentioned in Figure 1(a).  Note that the request at the
head of the queue is the one that is being serviced.  So, we
decided to enter the request of any server process
handling an HTML file request right after the one at the
head.  If there is more than one request generated by
server processes handling HTML file requests, then they
will be put into the queue on a first-come-first-served
basis.  In the same way, if there is more than one server
process handling an HTML file request that is ready to
run, then they will be put at the head of the ready queue
on a first-come-first-served basis.
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Figure 1.  Examples of how disksort and our disk
scheduling mechanism enter I/O requests into the
queue.

4. EXPERIMENTAL EVALUATION

In this section, we present an experiment designed to
examine the performance of a WWW server when using
both our CPU and disk scheduling mechanisms.  We start
with a description of the experimental setup, and proceed
to present the results of the experiment.

4.1 EXPERIMENTAL SETUP

Our CPU and disk scheduling mechanisms are
implemented in BSD/OS version 2.1.  The software used
for the WWW server and the browser in our experiment
was Apache version 1.2.5 and Netscape Navigator version



3.04 respectively.  The WWW server ran on a personal
computer with a 233 MHz AMD-K6 processor and 64
MB of memory, while browsers ran on three personal
computers, each with a 200MHz Intel Pentium Pro
processor and 64 MB of memory.  All machines were
running on BSD/OS version 2.1 and were connected by a
private 10 Mb/s Ethernet.  Also, our experiment was
conducted in single user mode, and the operating system’s
I/O buffer cache in the server machine and each browser’s
cache were disabled during the experiment in order to
clearly see the effect of our scheduling mechanisms.

In our experiment, the WWW server was accessed by
three browsers from each of the three machines randomly
at the same time; this number can cause bottleneck of the
CPU and the disk drive, which is indicated by the non-
zero length of the ready queue and the I/O queue, during
the short period of simultaneous accesses [7][8].  Also, all
browsers accessed 18 unique URLs (URL — Uniform
Resource Locator) all of which have the same content, an
HTML file (1,772 bytes) and an Image file (43,770 bytes).
For each URL, we measured the 5 trial times of time1 and
time2.  Time1 is the time from requesting a WWW page
until text data starts displaying.  Time2 is the time from
requesting a WWW page until image data displays
completely.  We will refer to the averages of 5 trial times
of time1 and time2 as response time of text data and
response time of image data respectively.  During the
experiment, SLP and RW were automatically predicted
and updated based on PFS every 500 milliseconds.  And
our previous works [7][9] have already showed that SLP
and RW are effectively predicted and updated by our
scheduling mechanisms.

4.2 EXPERIMENTAL RESULTS

Figure 2(a) illustrates the maximum, the minimum, the
mean, and the median response times of text data from 18
URLs.  Note that the median values are calculated directly
from time1, since it can be skewed if we calculate it from
the response times of text data, each of which is the
average of the 5 trial times of time1.  For comparison, we
also show the results when using the original scheduling
mechanisms (i.e., roundrobin and disksort).  Also, the
results for image data shown in Figure 2(b) are plotted in
the same way.

Figure 2(a) shows that the maximum, the minimum, the
mean, and the median response times of text data are
improved 20%, 92%, 30% and 26% respectively.  These

figures are calculated by %100×−
a

ba  where a and b are

the maximum (or the minimum or the mean or the
median) response times of text data when using the
original scheduling mechanisms and when using ours
respectively.  According to the result, our scheduling
mechanisms produce a good improvement for response
time of text data.  In other words, by using our scheduling

mechanisms the time from requesting a WWW page until
text data starts displaying is reduced.  Besides, the mean
response time when using both of our scheduling
mechanisms simultaneously is improved (30%) more than
when using either mechanism by itself (both of which are
about 20%).  However, the percentage of improvement
when using both our CPU and disk scheduling
mechanisms at the same time is not the sum of the
percentage when using either mechanism by itself.  This
could be because of the correlation between our two
scheduling mechanisms.  That is, the operation of moving
a process or an I/O request on one queue can affect the
operation on the other queue.  For example, if a process
which is moved to the head of the ready queue by our
CPU scheduling mechanism generates an I/O request,
then the likelihood that its I/O request will be
consequently put into the front of the I/O queue is high.
As a result, the effect of moving I/O requests to the head
of the I/O queue by our disk scheduling mechanism will
be diminished.
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Figure 2.  The experimental results when the
WWW server is accessed by multiple browsers
randomly at the same time while SLP and RW are
predicted/updated automatically.

However, the price to be paid for reducing the time from
requesting a WWW page until text data starts displaying
is that we reduce the fairness of the system, which
consequently affects the amount of time it takes from
requesting a WWW page until image data displays



completely.  If this effect is small, it is acceptable.  For
example, it is acceptable if the image data displays
completely while the users are reading the text data that
displays faster.  On the other hand, if the effect on the
response time of image data is big, then users might get
frustrated and not wait for the whole page to display
completely.  Therefore, care must be taken to ensure that
the resulting unfairness does not outweigh the
performance gains obtained.  And our result in Figure
2(b) shows that the worst or the maximum response time
of image data when using our mechanisms is only 4%
slower than when using the original scheduling
mechanisms.  In addition, the minimum, the mean and the
median response times of image data when using our
mechanisms are not so different from when not using ours.
According to the result, response time of image data pays
a small penalty under our scheduling mechanisms.

Therefore, any WWW server that experiences a lot of
simultaneous accesses from users would benefit from our
resource scheduling mechanisms.

5. RELATED WORK

The work described in this paper relates mainly to the
area of CPU and disk scheduling in operating systems.

5.1 CPU SCHEDULING

Traditional operating systems control the sharing of the
CPU resources among processes using a fixed scheduling
policy based on the utilization of a computer system such
as a real-time or a time-sharing system.  Real-time
systems’ scheduling policies are usually only available in
real-time operating systems, and not in general purpose
operating systems in which time-sharing systems’
scheduling policies are used.  However, the advent of
multimedia applications on PCs and workstations has
called for new scheduling paradigms to support real-time
in systems with conventional time-sharing schedulers.
One simple approach to do this, which has been adopted
by many general-purpose operating systems such as
Solaris, Linux and Windows NT, is to provide fixed
priorities that are higher in priority than regular priorities
to real-time applications.  Another approach is to schedule
based on proportion and/or period [10][11][12].  Another
approach is based on hierarchical scheduling with several
scheduling classes and with each application being
assigned to one of these classes for the entire duration of
its execution [13][14][15].

However, none of the above approaches is trying to
schedule based on behavior of a process.  As a
consequence, in some cases, this can hinder an effective
use of the CPU resource or can extend the processing time
of a process unnecessarily.  For example, in UNIX based
operating systems, several processes of the same priority

may be ready to run if they could use the CPU if it were
available.  Since only one process can be running at a
time, the rest will have to wait in the ready queue until the
CPU is free and rescheduled on a round-robin basis.  In
the case of WWW servers, when the number of server
processes needed to handle the simultaneous requests
increases, if a server process handling an HTML file
request is put at the end of the queue, then it takes a
longer time for the text data to show up on browsers.  As
a result, users experience slower response times.

5.2 DISK SCHEDULING

The simplest form of disk scheduling is First Come First
Served (FCFS), that schedules requests in the order of
their arrival.  Since the access schedule thus derived is
independent of the relative positions of the requested data
on disk, FCFS scheduling can incur significant seek time
and rotational latency.  Therefore, many scheduling
policies concentrated on minimizing seek time such as
Shortest Seek Time first (SSTF), SCAN, LOOK, and
V(R), and those concentrated on minimizing rotational
latency such as Shortest Latency Time First (SLTF) have
been proposed in order to achieve higher performance
[16][17][18][19].  In other words, these policies attempt
to service I/O requests with the minimum mechanical
motion.  However, they are less concerned about each
request individually, which is what our policy does.  As a
consequence, the problem similar to that when using
traditional CPU scheduling policies occurs when using
these disk scheduling policies.  That is, when a WWW
server is accessed by a lot of users simultaneously, the
likelihood that an I/O request generated by any server
process handling an HTML file request will be put at the
end of the queue is high, which results in user
experiencing a slower response.

In addition to CPU and disk scheduling, one function in
Windows 98, which users can get “faster program start
up” as performance enhancement [20], uses an idea
similar to ours.  That is the function improves the
performance of a user’s programs based on the previous
usage without making any changes to the programs.  In
other words, the function creates a log file to determine
which programs a user runs most frequently.  All such
frequently used files are then placed in a single location
on the user’s hard disk, which further reduces the time
needed to start those programs [21].  However, the
function does not alter the execution behavior of
programs based on the previous usage which is what our
idea does.  So, by using the function in Windows 98, the
operating system can control a user’s programs more
efficiently until a user’s programs start up (i.e., the
operating system can locate and load a user’s programs
faster), but it cannot execute or run a user’s programs
more efficiently.



6. CONCLUSION

This paper examined the performance of a WWW server
when using the proposed CPU and disk scheduling
mechanisms.  Our scheduling mechanisms controls the
allocation of a CPU and a disk drive based on the
behavior of WWW server processes rather than based on
a fixed policy used in traditional operating systems, in
which the utilization of a computer system such as a real-
time or a time-sharing system is a major concern.  And
our experimental result when the WWW server is
accessed randomly by multiple requests at the same time
shows that by using our disk scheduling mechanism the
response time, the time from requesting a WWW page
until text data starts displaying, can be reduced.  To be
more specific, the mean and the median response time are
improved 19% and 42% respectively.  Moreover, the
effect of unfairness due to our policy of giving favorable
treatment to server processes handling HTML file
requests on the response times of other types of data,
which in our case is image data, are relatively small.
Therefore, any WWW server that experiences a lot of
simultaneous requests from users would benefit from our
scheduling mechanisms.

Future work will measure the performance of a WWW
server when the operating system’s I/O buffer cache in
the server machine and each browser’s cache are enabled.
Also, we will evaluate the usefulness of our idea using
other existing software applications.
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