
1

Abstract--With the ongoing growth of the WWW (World Wide
Web) has come an increase in the number of simultaneous
requests servers must handle. As a result, users experience
slower response times during periods of high demand. In other
words, it takes a longer time for the first data to display on
browsers, the text data stored in an HTML (HyperText Markup
Language) file, to start displaying when servers are accessed by
many requests simultaneously. This situation could be one in
which it is most desirable to improve the response time and this
can be achieved by scheduling resources more efficiently in
operating systems. We have proposed a disk scheduling policy
for improving response time of a WWW server. This policy
gives preferential use of the disk drive to any process that is
predicted based on its behavior to be a server process handling an
HTML file request, by moving its I/O requests to the head of the
I/O queue. In this paper, we implement the proposed policy and
present the experimental evaluation of our disk scheduling
mechanism.

Keywords--Disk scheduling, WWW server, Operating system,
Behavior, Predict, Performance analysis

I. INTRODUCTION

HE WWW (World Wide Web) has experienced a
phenomenal growth and has become the most popular

Internet application. It has succeeded because it gives users
quick and easy access to a tremendous variety of information
on remote locations. With this ongoing growth has come an
increasing demand on WWW servers, which results in an
increase in the number of simultaneous requests that servers
must handle. As a result, users experience slower response
times on the WWW sites during periods of high demand. In
other words, it takes a longer time for the first data to display
on browsers, the text data stored in an HTML (HyperText
Markup Language) file, to start displaying when the servers are
accessed by many requests simultaneously. This can cause
users to get frustrated or give up waiting or even stop accessing
those sites any more. Therefore, in such a situation, a server’s
response time has become a critical issue for improving the
quality of service on the WWW.

A way to achieve the goal of improving a server’s response
time is to improve operating systems support for servers,
especially in the area of resources allocation in which
traditional operating systems still perform poorly. This is
because most traditional operating systems control the
allocation of the resources among processes using a fixed
scheduling policy, in which the utilization of a computer
system (e.g., a real-time or a time-sharing system) is a major
concern rather than contents or behavior of processes.

For example, in a time-sharing system, several processes
may be ready to run if they could use the CPU if it were
available. Since only one process can be running at a time,
the rest will have to wait in the queue until the CPU is free and
rescheduled on a round-robin basis. In addition, several
processes may be generating I/O requests. If processes make
I/O requests faster than they can be serviced, waiting queues
buildup for each I/O device. In the case of a disk drive,
traditional operating systems normally enter I/O requests into
the queue in such a way that the requests will be serviced with
minimum mechanical motion [1], [2], since it is likely to
improve the overall performance, however, possibly at the
expense of individual requests. In the case of WWW servers,
the individual requests, especially the HTML file requests, are
important. Therefore, with traditional operating systems,
when the number of server processes needed to handle the
simultaneous requests increases, if a server process handling an
HTML file request or its I/O request is put at the end of the
queue, then it takes a longer time for the text data to show up
on browsers.

Therefore, we proposed a process’ behavior-based
scheduling policy for improving the response time of a WWW
server [3]. This policy gives preferential use of the resources
such as a CPU resource (or I/O devices) to any process that is
predicted based on its behavior to be a server process handling
an HTML file request, by moving it (or its I/O requests) to the
head of the waiting queue. This allows each user to get an
HTML file faster during periods of high demand, while other
types of files (e.g., an Image file), which are embedded in the
HTML file by reference, are coming in. In other words, this
allows each user to view text and general layout of a WWW
page in a timely manner during periods of high demand while
other types of data such as an image are coming in, and also to
allow the user to stop loading if the page is not sufficiently
interesting to warrant waiting.

We have already implemented and evaluated the proposed
policy focused on the allocation of a CPU resource [4], [5].
And our evaluations show that the mean response time of the
WWW server is improved as much as 22% when using our
CPU scheduling mechanism compared with that when using
the conventional priority-based time-sharing mechanism. In
this paper, we implement the proposed policy focused on the
allocation of an I/O device as a disk drive, and present the
experimental evaluation of our disk scheduling mechanism.

The remainder of this paper is organized as follows.

A Disk Scheduling Mechanism for a WWW Server
Sukanya SURANAUWARAT Hideo TANIGUCHI

Graduate School of Information Science and Electrical Engineering,
Kyushu University, Fukuoka 812-8581, Japan

{sukanya,tani}@csce.kyushu-u.ac.jp

T

2

Section 2 provides background information on the WWW.
Section 3 is a brief overview of our scheduling policy.
Section 4 give important aspects of implementation. Section
5 describes our experiments and explains the results we
obtained. Section 6 discusses related work. Section 7 offers
our conclusion and future work.

II. THE WWW

The WWW is based on the client-server model [6], [7].
That is, users access WWW pages provided by WWW servers
via WWW clients, mainly browsers. WWW pages are
written in HTML and stored on a disk as text files called
HTML files. An HTML file contains text data that users will
view and HTML tags that specify structure for the text data as
well as formatting hints. Because an HTML file uses a text
representation, non-text data such as images are not included
directly in the HTML file. Instead, a tag is placed in the
HTML file to specify the place at which an image should be
inserted and the source of the file that stores it (Image file).
HTML files and Image files account for more than 90% of the
total requests to a server [8], [9]. Therefore, the WWW page
in this paper consists of an HTML file and an Image file.

WWW clients. A user can access the information on the
WWW by using a browser, such as Netscape Navigator,
Internet Explorer, or Mosaic. When the user selects a WWW
page to retrieve (usually, by clicking a mouse on a hyperlink),
the browser creates a request to be sent to the corresponding
WWW server and then waits for a response. When the
response arrives, the browser interprets and processes the
HTML file sent back by the server, and then displays the text
data for the user to view. During the interpretation, if the
WWW page also contains other types of data such as an image,
then the browser will request the Image file from the WWW
server.

WWW servers. The purpose of a WWW server is to
provide WWW pages to WWW clients that request them.
The server software we used is Apache 1.2.5 [10], the pre-
forking model server. In this model, a master process pre-
forks a pool of child server processes to handle requests.
However, the master process does not handle any part of the
request. In this paper, we refer to each child server process as
a server process.

III. OVERVIEW

As the demand placed on a WWW server grows, the number
of simultaneous requests it must handle increases. As a result,
users see slower response times during periods of high demand.
In other words, it takes a longer time for the text data stored in
an HTML file to show up on browsers so that users can view
the contents. This situation could be one in which it is most
desirable for users to improve the response time of a WWW
server, since they tend to get frustrated if it takes a long time to
start viewing a WWW page. Hence, in such a situation, our
scheduling goal is to display the text data for the user to view
as soon as possible while other types of data such as an image

are coming in, and also to allow the user to stop loading if the
page is not sufficiently interesting to warrant waiting. A
method to achieve this goal is described below.

Most processes, except the currently executing process (i.e.,
process in the run state), are in one of two queues: a ready
queue or a sleep queue. Processes that are waiting for the
CPU to become available (i.e., processes in the ready state) are
placed on a ready queue, whereas processes that are blocked
awaiting an event (i.e., processes in the wait state) are located
on a sleep queue associated with the event. When a process is
blocked awaiting an event to happen such as the completion of
its I/O request, if the desired I/O device (e.g., a disk drive) is
available, the request can be serviced immediately. If that
device is being used by any other process, then the request will
be put into the I/O queue for that device. By reducing the
time a process waits for the CPU to become available in the
ready queue or the time its I/O requests wait to be serviced in
the I/O queue, we can reduce the processing time of a process,
which results in an enhanced response time if that process is a
server process handling an HTML file request. For this
reason, we proposed the scheduling policy that when a CPU
(or an I/O device) becomes bottlenecked, any server process
handling an HTML file request (or any of its I/O requests) will
be moved to the head of the ready queue (or the I/O queue for
that device). Note that the bottleneck mentioned in this paper
is the situation in which the resources are being used and there
is more than one process waiting to use the resources.

IV. IMPLEMENTATION

When we discussed the scheduling mechanism that
implements the proposed scheduling policy focused on the
bottleneck of a disk drive, we had two problems: how to detect
which processes are server processes handling HTML file
requests, and how to operate the I/O queue. Since the first
problem is also one of the problems we had when we
implemented the proposed policy focused on the bottleneck of
a CPU resource [3], we will briefly describe it here in order to
provide sufficient understanding to the rest of the paper.

To deal with the first problem, we first need to know what
a server process handling an HTML file request is like. So,
we logged the execution behavior of a WWW server in terms
of process identifier, process state and time. And based on
this log, we created the predicted execution behavior called
PFS (Program Flow Sequence) for each server process. PFS
is a sequence of entries describing process state and time spent.
We analyzed the behavior of server processes based on PFS
and found that a server process handling an HTML file request
is a process that waits for a request from a browser, and the
time it waits for a request is relatively long compared with the
time waiting for other kinds of events to happen (e.g., the
completion of an I/O request) in the wait state. Also, after
accepting a request, it tends to change between run state and
wait state a number of times. The number of changes is
proportional to the size of the file it handles, i.e., an HTML file
(which is usually smaller than an Image file). In other words,

3

any server process handling an HTML file request has two
characteristics: after waiting for a long time in the wait state
(characteristic 1), it tends to cycle between run state and wait
state a number of times but fewer times than that of a server
process handling an Image file request (characteristic 2).

Next, we introduced two parameters into our mechanism in
order to determine which processes have the above two
characteristics (i.e., to determine which processes are server
processes handling HTML file requests): long wait threshold
(its value is denoted by SLP) and run state/wait state threshold
(its value is denoted by RW). If the time spent by a process
in the wait state before moving to the run state is more than
SLP, and the number of times the process changes between run
state and wait state is less than RW, then we determine that it is
a server process handling an HTML file request. By these
two parameters, we can detect which process appears to be a
server process handling an HTML file request. SLP and RW
are automatically predicted and updated every time period
based on the predicted execution behavior of each server
process, i.e., PFS of each server process. We note that we
cannot fix SLP and RW at some values due to random accesses
from users (in the case of SLP), and the changing execution
behavior of the server and the size of the HTML files it
handles (in the case of RW). Also, PFS is created and
updated every time period based on the log we collected when
the WWW server is running. As mentioned, a log is a
sequence of entries describing process identifier, process state
and time.

To deal with the second problem, our disk scheduling
mechanism gives preferential use of the disk drive to any
process that is predicted to be a server process handling an
HTML file request, by moving its I/O requests to the head of
the I/O queue. In other words, our mechanism puts any I/O
request from any process that has characteristic 1 at the head of
the I/O queue; and when that process loses characteristic 2, its
I/O requests will be scheduled normally, i.e., its I/O requests
will be put into the I/O queue using a routine provided by the
operating system, which in our case is the disksort routine.
Disksort enters I/O requests into the queue in a cyclic,
ascending, cylinder order as described below.

An I/O queue is made up of one or two lists of requests
ordered by cylinder number. The request at the front of the
first list indicates the current position of the drive. If a second
list is present, it is made up of requests that lie before the
current position. Each new request is sorted into either the
first or the second list, according to the request’s location.
When the heads reach the end of the first list, the drive begins
servicing the other list. Figure 1(a) shows an example of an
I/O queue with requests for I/O to blocks on cylinders 75, 30
and 120 when the request at cylinder 100 is being serviced.
For comparison, Figures 1(b) and (c) show respectively how
disksort and our mechanism enter the requests from a server
process handling an HTML file request on cylinders 140 and
80, in addition to the requests mentioned in Fig. 1(a). Note
that in the case of the operating system in which we

implemented our disk scheduling mechanism (BSD/OS 2.1),
the request at the head of the queue is the one that is being
serviced. So, we decided to enter the request of any server
process handling an HTML file request right after the one at
the head. Also, when there is more than one request
generated by server processes handling HTML file requests,
then they will be put into the queue on a first-come-first-served
basis.

100 120 140 30

100 140 80 120

75 80

30 75

(a)

(b)

(c)

100 120 30 75
I/O queue
disksort

disksort
I/O queue

our mechanism
I/O queue

Fig. 1. Examples of how disksort and our mechanism enter I/O requests into
the queue.

V. EXPERIMENTAL EVALUATION

In this section, we present three experiments designed to
evaluate the effectiveness of our disk scheduling mechanism,
which is implemented as a modification to the BSD/OS 2.1
kernel. In experiment 1, we used an I/O intensive program
(test program) to verify that our scheduling mechanism works
as expected, i.e., when the disk drive is bottlenecked the
processing time of the test program can be reduced by using
our disk scheduling mechanism due to its policy of moving the
I/O requests generated by the process running on behalf of the
test program to the head of the I/O queue. In experiment 2,
we examined the performance of the WWW server in a simple
case in which the WWW server was accessed by a single
browser. In order to clearly see the effect of our disk
scheduling mechanism, we ran three I/O intensive background
processes that bottlenecked the disk drive of the server
machine throughout the experiment. And, we set the browser
to access the WWW server in such a way that SLP would be
predicted 100% correctly, that is, it accessed the WWW server
every 30 seconds while SLP was fixed at 20 seconds. The
good result obtained in experiment 2 motivated us to perform
experiment 3 in order to examine the performance of the
WWW server in a more realistic case in which the WWW
server was accessed by multiple browsers randomly at the
same time, and no I/O intensive background process coexisted,
and SLP and RW were predicted/updated automatically every
500 milliseconds due to random accesses from browsers and
the changing execution behavior of the server.

A. Experimental 1

1) Experimental Setup
Our test program is a program that reads a text file which is

4

8,000 bytes. In this experiment, we varied the number of
coexisting I/O intensive background processes from 1 to 3, and
we measured the processing time or the time the test program
took to read the text file when using disksort and when using
our disk scheduling mechanism. Besides, we measured the
processing time when the content of the I/O queue was logged
while using our scheduling mechanism. For comparison, we
also show the result when there was no coexisting I/O intensive
background process. Each I/O intensive background process
looped the file-read of 20 different text files.

Experiment 1 was run on a 233 MHz AMD-K6 with 64 MB
of memory, running our modified version of BSD/OS 2.1.
Also, the experiment was conducted in single user mode, and
the operating system’s I/O buffer cache was disabled during
the experiment in order to clearly see the effect of our disk
scheduling mechanism.

2) Experimental Results
Figure 2 shows the average of 16 trial times of the time the

test program took to read the text file when using disksort and
when using our disk scheduling mechanism.

0

10

20

30

40

50

60

70

0 1 2 3

A
ve

ra
ge

 r
ea

d
tim

e
(m

se
c) disksort

our mechanism

The number of I/O intensive background processes

our mechanism (while logging I/O queue’s content)

Fig. 2. The effect of our disk scheduling mechanism when using a test
program.

The experimental results are described below.
• In the case of using our disk scheduling mechanism,

the results when the content of the I/O queue was
logged and when it was not logged show the same
trend.

• In the case of using disksort, the average time the test
program took to read the text file when there was no
coexisting I/O intensive background process is the
same as when there was a coexisting I/O intensive
background process. Accordingly, the bottleneck of
the disk drive does not occur when there is a coexisting
I/O intensive background process. As a consequence,
we cannot notice the effect of our scheduling
mechanism when there is only one coexisting I/O
intensive background process, due to its policy of
moving any server process handling an HTML file
request to the head of the I/O queue when the disk
drive becomes bottlenecked.

• When the number of coexisting I/O intensive
background processes is more than two, the effect of

our disk scheduling mechanism is noticeable. That is,
the time taken to read the text file is decreased when
using our scheduling mechanism. This improvement
also points out that the bottleneck of the disk drive
occurs when there is more than two coexisting I/O
intensive background processes. In addition, the
results agree with the content of the I/O queue we
logged, i.e., the length of the I/O is not zero and the I/O
requests generated by the process running on behalf of
the test program is moved to the head of the queue.

The above results show that when the disk is bottlenecked
the time the test program takes to read a file can be reduced by
using our disk scheduling mechanism.

B. Experiment 2

1) Experimental Setup
The software used for the WWW server and the browser in

this experiment was Apache 1.2.5 and Netscape Navigator
3.04 respectively. The WWW server ran on a personal
computer with a 233 MHz AMD-K6 processor and 64 MB of
memory, running our modified version of BSD/OS 2.1. On
the other hand, the browser ran on a personal computer with a
200 MHz Intel Pentium Pro processor and 64 MB of memory,
running on BSD/OS 2.1. The server machine and the client
machine were connected by a private 10 Mb/s Ethernet. Also,
the experiment was conducted in single user mode, and the
operating system’s I/O buffer cache in the server machine and
each browser’s cache were disabled during the experiment in
order to clearly see the effect of our disk scheduling
mechanism.

In this experiment, the browser accessed the WWW server
every 30 seconds when the WWW server coexisted with three
I/O intensive background processes and SLP was fixed at 20
seconds. Such a situation is the best for our scheduling
mechanism, since the disk drive of the server machine is
bottlenecked caused by the three coexisting I/O intensive
background processes and any access from the browser is set in
such a way that SLP would be predicted 100% correctly. In
this experiment in which we varied RW in the range from 1 to
10, we measured the 5 trial times of time1 and time2. Time1
is the time from requesting a WWW page until text data starts
displaying. Time2 is the time from requesting a WWW page
until image data displays completely. We will refer to the
averages of 5 trial times of time1 and time2 as response time of
text data and response time of image data respectively. Note
that, for each trial, the browser accessed the same URL
(Uniform Resource Locator), an HTML file (1,772 bytes) and
an Image file (43,770 bytes).

2) Experimental Results
Figure 3 shows experimental results plotted with the

response time on the y-axis normalized by the response time
when using disksort. This figure shows that the response time
of text data for each RW is better than that when using disksort,
as expected. This is because the coexisting I/O intensive
background processes always caused the disk drive to become
bottlenecked and the WWW server processes waiting for

5

HTML file requests from browsers were always in the wait
state at least 30 seconds which was more than SLP (20
seconds).

Figure 3 also shows that the response times of image data
are improved. This could be because our policy also gives
favorable treatment to any server process handling an Image
file request that has waited for a long time (i.e., waited more
than SLP of 20 seconds) in the wait state, over other processes
including the coexisting I/O intensive background processes.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10

R
es

po
ns

e
tim

e
(n

or
m

al
iz

ed
)

RW

response time of text data
response time of image data

Fig. 3. The experimental results in a simple case in which the WWW server
is accessed by a single browser.

C. Experiment 3

1) Experimental Setup
The software and the hardware used in this experiment were

the same as those in experiment 2 except that the number of
client machines was increased to three. All the client
machines had the same specification as that in experiment 2
and were also connected to the server machine by a private 10
Mb/s Ethernet.

In this experiment, we set three browsers from each of the
three client machines to access the WWW server randomly at
the same time. According to the content of the I/O queue we
logged during the pre-experiment, the number of simultaneous
accesses in this experiment can cause bottleneck of the disk
drive, which is indicated by the non-zero length of the I/O
queue, during the short period of simultaneous accesses. Also,
all browsers accessed 18 unique URLs all of which have the
same content as that in experiment 2, that is, an HTML file
(1,772 bytes) and an Image file (43,770 bytes). For each
URL, we measured the 5 trial times of time1 and time2, in
other words, we measured response time of text data and
response time of image data. During the experiment, SLP and
RW were automatically predicted and updated based on PFS
every 500 milliseconds. And our previous works [4], [5]
have already showed that SLP and RW are effectively
predicted and updated by our scheduling mechanism.

2) Experimental Results
Figure 4(a) illustrates the maximum, the minimum, the mean,

and the median response times of text data from 18 URLs.
Note that the median values are calculated directly from time1,
since it can be skewed if we calculate it from the response

times of text data, each of which is the average of the 5 trial
times of time1. For comparison, we also show the results
when the I/O requests were scheduled using disksort. Also,
the results for image data shown in Fig. 4(b) are plotted in the
same way.

0

1

2

3

4

5

6

max min mean median

R
es

po
ns

e
tim

e
(s

ec
)

(a) Response time of text data

disksort
our mechanism

4.57 4.67

0.76

0.05

2.69
2.17 2.17

1.26

0

2

4

6

8

10

12

max min mean median

R
es

po
ns

e
tim

e
(s

ec
)

(b) Response time of image data

disksort
our mechanism9.28 9.42

5.94

4.58

7.65
7.02

8.05 7.85

Fig. 4. The experimental results in a more realistic case in which the WWW
server is accessed by multiple browsers randomly at the same time.

Figure 4(a) shows that the minimum, the mean, and the
median response times of text data are improved 93%, 19%
and 42% respectively, while the maximum response times get
worse a little bit (only 2%). These figures are calculated by

%100×−
a

ba where a and b are the maximum (or the

minimum or the mean or the median) response times of text
data when using disksort and when using our scheduling
mechanism respectively. According to the result, our disk
scheduling mechanism produces a good improvement for
response time of text data. In other words, by using our disk
scheduling mechanism the time from requesting a WWW page
until text data starts displaying is reduced.

However, the price to be paid for reducing the time from
requesting a WWW page until text data starts displaying is that
we reduce the fairness of the system, which consequently
affects the amount of time it takes from requesting a WWW
page until image data displays completely. If this effect is
small, it is acceptable. For example, it is acceptable if the
image data displays completely while the users are reading the
text data that displays faster. On the other hand, if the effect
on the response time of image data is big, then users might get

6

frustrated and not wait for the whole page to display
completely. Therefore, care must be taken to ensure that the
resulting unfairness does not outweigh the performance gains
obtained. And our result in Fig. 4(b) shows that the worst or
the maximum response time of image data when using our
mechanism is only 1% slower than when using disksort.
According to the result, response time of image data pays a
small penalty under our scheduling mechanism.

Therefore, any WWW server that experiences a lot of
simultaneous accesses from users would benefit from our disk
scheduling mechanism.

VI. RELATED WORK

The work described in this paper relates mainly to the area
of disk scheduling in operating systems.

The simplest form of disk scheduling is FCFS (First Come
First Served), that schedules requests in the order of their
arrival. Since the access schedule thus derived is independent
of the relative positions of the requested data on disk, FCFS
scheduling can incur significant seek time (the time for disk
arm to move the read-write heads to the cylinder containing the
desired sector) and rotational latency (the additional time
waiting for the disk to rotate the desired sector to the disk
head). Therefore, many scheduling policies concentrated on
optimizing seek time (seek optimization) and rotational latency
(rotational optimization) have been proposed in order to
achieve higher performance.

A. Seek Optimization

The SSTF (Shortest Seek Time First) policy [1], [2] chooses
the next request to service by selecting the pending request that
will incur the shortest seek time. It is usually infeasible to
predict exact seek times, but SSTF may be closely
approximated by using seek distances. SSTF results in better
throughput rates than FCFS, and mean response time tends to
be lower for moderate loads. One significant drawback is that
higher variances occur on response times because of the
discrimination against the outermost and innermost tracks; in
the extreme, starvation of requests far from the read-write
heads could occur.

The SCAN policy [1], [2] was developed to overcome the
discrimination and high variance in response times of SSTF.
This policy operates like SSTF except that it chooses the
request that results in the shortest seek distance in a preferred
directions, i.e., inward or outward. It only changes direction
when it reaches the innermost or outermost cylinder.

The C-SCAN (Circular SCAN) policy [1], [2], a variant of
SCAN, replaces the bidirectional scan with a single direction
of disk arm travel. When the arm reaches the last cylinder, it
immediately returns to the first cylinder without servicing any
requests on the return trip. C-SCAN treats each cylinder
equally, rather than favoring the center cylinders. The LOOK
policy [2], [11], another SCAN variation, changes scanning
direction when no more requests are pending in the current
direction. C-SCAN and LOOK can be combined, resulting in
the C-LOOK policy [2], [11] which the disksort routine in

BSD/OS 2.1 is implemented based on.
The VSCAN(R) policy creates a continuum of policies

between SSTF and LOOK. It adds a penalty, which is
dependent on the parameter R and the seek distance, whenever
it changes direction, VSCAN(0.0) is equivalent to SSTF, and
VSCAN(1.0) reduces to LOOK.

B. Rotational Optimization

Paralleling the SSTF strategy of seek optimization is the
SLTF (Shortest Latency Time First) strategy for rotational
optimization. Once the disk arm arrives at a particular
cylinder, there may be many requests pending on the various
tracks of that cylinder. The SLTF strategy examines all these
requests and services the one with the shortest rotational delay
first.

The above policies attempt to service I/O requests with the
minimum mechanical motion, but are less concerned about
each request individually, which is what our policy does. As
a consequence of using the above policies, when a WWW
server is accessed by a lot of users simultaneously, the
likelihood that an I/O request generated by any server process
handling an HTML file request will be put at the end of the
queue is high, which results in users experiencing a slower
response.

VII. CONCLUSION

This paper examined the benefit of the proposed scheduling
policy that controls the allocation of a disk drive based on the
behavior of WWW server processes rather than based on a
fixed policy used in traditional operating systems, in which the
utilization of a computer system such as a real-time or a time-
sharing system is a major concern. And our experimental
result when the WWW server is accessed randomly by
multiple requests at the same time show that by using our disk
scheduling mechanism the response time, the time from
requesting a WWW page until text data starts displaying, can
be reduced. To be more specific, the mean and the median
response time are improved 19% and 42% respectively.
Moreover, the effect of unfairness due to our policy of giving
favorable treatment to server processes handling HTML file
requests on the response times of other types of data, which in
our case is image data, are relatively small. Therefore, any
WWW server that experiences a lot of simultaneous requests
from users would benefit from our disk scheduling mechanism.

Future work will measure the performance of a WWW
server when the operating system’s I/O buffer cache in the
server machine and each browser’s cache are enabled, and also
when both CPU and I/O scheduling mechanisms are used at the
same time.

ACKNOWLEDGMENT

We would like to thank James Michael Perry for his
assistance in proofreading this paper.

7

REFERENCES

[1] H. Deitel, An Introduction to Operating Systems (2nd ed.), Addison-
Wesley, 1990.

[2] Silberschatz and P. Galvin, Operating System Concepts (5th ed.), John
Wiley & Sons, 1997.

[3] S. Suranauwarat and H. Taniguchi, “Process scheduling policy for a
WWW server based on its contents,” IPSJ Trans., vol.40, no.6,
pp.2510-2522, 1999. (in Japanese)

[4] S. Suranauwarat and H. Taniguchi, “Evaluation of a process scheduling
policy for a WWW server based on its contents,” IEICE Trans. Inf. &
Syst., vol.E83-D, no.9, pp.1752-1761, 2000.

[5] S. Suranauwarat and H. Taniguchi, “Operating systems support for the
evolution of software: an evaluation using WWW server software,” In
Proc. of the 2000 International Symposium on Principles of Software
Evolution, pp.292-301, 2000.

[6] D. Comer, Computer Networks and Internets (2nd ed.), Prentice-Hall,
1999.

[7] A. Tanenbaum, Computer Networks (3rd ed.), Prentice-Hall, 1996.
[8] M. Arlitt and C. Williamson, “Internet web servers: workload

characterization and performance implications,” IEEE/ACM Trans.
Networking, vol.5, no.5, pp.631-645, 1997.

[9] A. Cunha, A. Bestavros, and M. Crovella, “Characteristics of WWW
client-based traces,” Tech. Rep. BU-CS-95-010, Computer Science
Department, Boston University, 1995.

[10] http://www.apache.org/
[11] A. Worthington, “Scheduling algorithms for modern disk drives,” In

Proc. of the 1994 Conference on Measurement and Modeling of
Computer Systems, pp.241-251, 1994.

[12] R. Geist, “A continuum of disk scheduling algorithms,” ACM Trans.
Comput. Syst., vol.5, no.1, pp.77-92, 1987.

	INTRODUCTION
	The WWW
	Overview
	Implementation
	Experimental Evaluation
	Experimental 1
	Experimental Setup
	Experimental Results

	Experiment 2
	Experimental Setup
	Experimental Results

	Experiment 3
	Experimental Setup
	Experimental Results

	Related Work
	Seek Optimization
	Rotational Optimization

	Conclusion

