
1752
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.9 SEPTEMBER 2000

PAPER

Evaluation of a Process Scheduling Policy for a WWW

Server Based on Its Contents

Sukanya SURANAUWARAT†, Nonmember and Hideo TANIGUCHI†, Regular Member

SUMMARY Traditional process schedulers in operating sys-
tems control the sharing of the processor resources among pro-
cesses using a fixed scheduling policy based on the utilization
of a computer system such as a real-time or a timesharing sys-
tem. Since the control over processor allocation is based on a
fixed policy, not based on contents or behavior of processes, this
can hinder an effective use of a processor or can extend the pro-
cessing time of a process unnecessarily in some cases. We have
already proposed a process scheduling policy, which responds to
the behavior of multiple processes of a WWW server, in order to
improve the response time of a WWW server. This policy gives
any process of a WWW server that is predicted to be a WWW
server process handling a text data request from a browser pri-
ority over all other processes by moving it to the head of the
ready queue where processes waiting for the processor to become
available are placed. In this paper, we present the experimental
evaluation of our proposed process scheduling policy with regard
to the number of simultaneous accesses from browsers and the
processor load of the server machine, and explain the results we
obtained.
key words: process scheduling, WWW server, response time,
execution behavior, predict

1. Introduction

Traditional process schedulers in operating systems
control the sharing of the processor resources among
processes using a fixed scheduling policy based on the
utilization of a computer system such as a real-time or
a timesharing system. A real-time system’s scheduling
policy must be able to analyze or handle data faster
than they come in and it must also respond to time
events. In general, real-time systems are categorized as
hard real-time and soft real-time. In hard real-time sys-
tems meeting application-specific deadlines is required,
while in soft real-time systems missing a deadline is
unfortunate but not catastrophic. Therefore, schedul-
ing applications in hard real-time systems has been an
important area of research in real-time systems (e.g.,
[1]–[8]). A timesharing system’s scheduling policy is
to provide good response to interactive users. It is an
historical artifact from a time when many users with
interactive and batch computing requirements shared a
single processor, and it is still used in most workstation
operating systems.

Real-time systems’ scheduling policies are usually

Manuscript received October 27, 1999.
Manuscript revised March 23, 2000.

†The authors are with the Graduate School of Informa-
tion Science and Electrical Engineering, Kyushu University,
Fukuoka-shi, 812-8581 Japan.

only available in real-time operating systems, and not
in more general purpose operating systems, like work-
station operating systems. However, the advent of mul-
timedia applications (the applications with real-time
characteristics) on PCs and workstations has called for
new scheduling paradigms to support real-time in sys-
tems with traditional timesharing schedulers. One ap-
proach to do this is to schedule based on proportion
and/or period [9]–[12]. A different approach is based on
hierarchical scheduling with several scheduling classes
and with each application being assigned to one of these
classes for the entire duration of its execution [13]–[15].

Since the traditional process scheduling policies are
based on the utilization of a computer system, none of
the above approaches is trying to schedule based on
contents or behavior of processes. As a consequence,
this can hinder an effective use of a processor or can
extend the processing time of a process unnecessarily
in some cases. For example, in a timesharing system, if
a process does not complete its job before its quan-
tum (time-slice) expires, the processor is preempted
and given to the next waiting process no matter how lit-
tle more processor time the process needs. Thus, a pro-
cess that needs just a little bit more processor time will
not complete its job until its next quantum. Because
of this, the processing time and the context switch-
ing cost of the process increase unnecessarily. If we
had predicted the behavior of the process and delayed
process switching based on the predicted behavior that
the process needed a little bit more processor time to
complete its job, then the extra costs mentioned above
would have been avoided.

In a parallel computer system, scheduling a paral-
lel program onto processors is basically done by taking
a directed acyclic graph representing the execution be-
havior of the parallel program (e.g., dependencies of
code segments) as input and schedule it onto proces-
sors of a target machine in a manner which reduces the
completion time [16]–[18]. However, scheduling is per-
formed without regard to the previous execution be-
havior of the parallel program.

Therefore, we proposed the idea called POS (Pro-
gram Oriented Schedule) [19]. The idea of POS is by
increasing operating system ability to alter the execu-
tion behavior of a program according to the predicted
behavior from the previous execution(s), the operat-
ing system could optimize the execution behavior of



SURANAUWARAT and TANIGUCHI: EVALUATION OF A PROCESS SCHEDULING POLICY FOR A WWW SERVER
1753

the program allowing user requirements (e.g., perfor-
mance enhancement) to be satisfied without making
any changes to the existing program. In order to pre-
dict the execution behavior of a program, the idea of
POS requires that the operating system have the ability
to log the execution behavior of the program in terms of
process identifier, process state and time. And based
on this log, the operating system will create the pre-
dicted execution behavior of the program or update it
if it already exists.

One function in Windows 98, which users can get
“faster program start up” as performance enhance-
ment [20], uses an idea similar to that of POS. That is
the function improves the performance of a user’s pro-
grams based on the previous usage without making any
changes to the programs. In other words, the function
creates a log file to determine which programs a user
runs most frequently. All such frequently used files are
then placed in a single location on the user’s hard disk,
which further reduces the time needed to start those
programs [21]. However, the function does not alter
the execution behavior of programs based on the pre-
vious usage which is what our idea does. So, by using
the function in Windows 98, the operating system can
control a user’s programs more efficiently until a user’s
programs start up (i.e., the operating system can lo-
cate and open a user’s programs faster), but it cannot
execute or run a user’s programs more efficiently.

We have already applied POS to the process sched-
uler [19], [22]. In [19], we proposed the process schedul-
ing policy that allows a process to continue its exe-
cution even though its quantum has already expired
when it is predicted that a process needs a little bit
more processor time before it issues an I/O operation.
The objective of this policy is to minimize processing
time and/or context switching cost of the process of
the target program. However, the target programs of
this policy are the programs that consist of only a sin-
gle process. So, we extended our work to the programs
composed of multiple processes such as servers. Server
performance is crucial to client/server applications [23].
We used a WWW server, which is a program that con-
sists of multiple processes, as a sample server. And we
proposed a process scheduling policy for improving the
response time of a WWW server [22]. This policy gives
any process of a WWW server that is predicted to be a
WWW server process handling a text data request from
a browser priority over all other processes by moving it
to the head of the ready queue where processes wait-
ing for the processor to become available are placed.
We also evaluated this policy experimentally in simple
cases for the purpose of verifying that our scheduling
mechanism works as expected.

In this paper, we present the experimental evalua-
tion of the proposed process scheduling policy in more
complicated and useful cases compared with those in
[22]. First, we measure the performance of a WWW

server in terms of response time and compare the per-
formance of the proposed policy to that of a con-
ventional priority-based timesharing policy when the
WWW server is accessed by a lot of browsers simulta-
neously. For a WWW server, this kind of situation is
more likely to be a realistic case compared with those in
[22] where the number of browsers accessing the WWW
server ranged from 1 to 3 and just two machines (a
client machine and a server machine) were used. And
this could be the situation in which it is most desir-
able to improve the response time of a WWW server.
Second, we measure the effect of the number of simul-
taneous accesses on the processing ability of the server
machine in terms of response time and processor load.
Then, we find the relation between the number of si-
multaneous accesses and the response time, and the
relation between the number of simultaneous accesses
and the processor load. Based on the number of simul-
taneous accesses, we also compare the response time of
the proposed policy to that of a conventional priority-
based timesharing policy.

The rest of this paper is organized as follows. Sec-
tion 2 gives an easy example to show how the per-
formance of a program will be improved when POS
is applied to the process scheduler. Section 3 briefly
overviews our scheduling mechanism. Section 4 de-
scribes our experiments and explains the results we
obtained. Section 5 offers our conclusions and future
work.

2. An Example of the Effect of POS

We used an easy example shown in Fig. 1 to identify
how performance will be improved when POS is applied
to the process scheduler.

In Fig. 1, process A and process B need respectively
3.4 seconds and 2.1 seconds of processor time to accom-
plish their jobs. Both processes have the same priority
and a time-slice of 1 second. Figure 1 (a) shows the pro-
cessing times of process A and process B when using
a conventional priority-based timesharing scheduler.

Fig. 1 An example of the effect of POS.



1754
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.9 SEPTEMBER 2000

The processing times of process A and process B are
5.5 seconds and 4.1 seconds respectively. On the other
hand, Fig. 1 (b) shows the processing times of process A
and process B when POS is applied. Based on the pre-
dicted behavior that process B needs only 0.1 seconds
more processor time to complete its job, the process
scheduler delays process switching by 0.1 seconds to al-
low process B to complete its job. Delaying process
switching causes the processing time of process B to be
reduced to 3.1 seconds while that of process A is still the
same as in Fig. 1 (a). Moreover, the context switching
cost of process A and B also decreases.

This example also shows how the process schedul-
ing policy, we proposed in [19], controls the time-slice
length of the object process, and how the processing
time and/or context switching cost of the object pro-
cess will decrease when using this policy.

3. Overview

Our process scheduling mechanism is composed of two
parts: the logging mechanism and the process control
mechanism. We log the execution behavior of a WWW
server and create/update the predicted execution be-
havior called PFS (Program Flow Sequence) through
the logging mechanism. And we alter the execution be-
havior of the WWW server by using the process control
mechanism.

3.1 Logging Mechanism

We will first briefly sketch how the WWW server we
used forks and maintains each process of the WWW
server to provide sufficient background information,
and then proceed to the description of the logging
mechanism.

The WWW server software we used is Apache ver-
sion 1.2.5. Apache can be run in two different modes:
from the inetd system process or, in standalone mode.
Standalone is the most common mode of operation,
since it is far more efficient. Therefore, our Apache
server was configured to run in standalone mode, and
how it operates is described as following. On startup,
the parent server process creates a pre-defined number
of child server processes. From this point on, the par-
ent server process checks the status of the child server
processes periodically. If the number of idle child server
processes falls below the pre-defined lower bound, ex-
tra child server processes are created, one per second.
An idle child server process is one which not handling
a request. If the number of idle child server processes
exceeds the pre-defined upper bound, the extra child
server processes are killed off. Beside this, there are
also pre-defined upper bounds for the number of re-
quests each child is allowed to process before it dies,
and on the number of simultaneous requests that can be
served; not more than this number of child server pro-

cesses will be created. Note that our scheduling mech-
anism is interested in only the child server process(es)
and refers to each one as a WWW server process.

When the WWW server is running, a log is col-
lected. A log is a sequence of entries describing process
identifier, process state and time. And based on this log
a sequence called PFS, which is the predicted behav-
ior of a process, is created or updated for each WWW
server process. PFS is a sequence of entries describing
process state and time spent.

3.2 Process Control Mechanism

For this paper, the content of a WWW page is pretty
simple, that is, one which contains just text data and
image data. Text data and image data are separately
saved in a file written in HTML (HTML file) and an
image-formatted file (Image file) respectively. After
making a request for a WWW page, the browser will
interpret and process the HTML file sent back by the
WWW server it requested and then display the text
data. During the interpretation, if the WWW page
also contains image data, then the browser will request
the WWW server again for the Image file.

From the point of view of WWW users, they want
fast response time (i.e., the time from requesting a
WWW page until text data displays). Since the rise of
the WWW, we have seen a commensurate rise in im-
patience. Nowadays, people including us get frustrated
if it takes a long time to download a page. Therefore,
improving the response time for the users we serve is
important, and improving the performance of WWW
servers is vital to the goal of reducing response times
for WWW users.

When a WWW server is accessed by a lot of
browsers simultaneously, it takes time even for the text
data which is much smaller than image data to show
up on browsers. As a result, the response time of each
user decreases significantly. This situation could be one
in which it is most desirable to improve the response
time of a WWW server. Hence, in such a situation, our
scheduling goal is to give the user something to read (as
soon as possible) while the images are coming in and
also to allow the user to stop loading if the page is not
sufficiently interesting to warrant waiting. A method
to achieve this goal is described below. Note that since
POS idea-based scheduling is based on the behavior of
processes of programs, the delayed process switching
method mentioned in Sect. 2 cannot be applied to the
WWW server. Because this method is just an example
of the effect of POS; so the behavior of processes of pro-
grams it assumes are also simple and totally different
from the behavior of WWW server processes.

Most processes, except the currently executing
process (i.e., process that is in the run state), are in
one of two queues: a ready queue or a sleep queue.
Processes that are waiting for the processor to become



SURANAUWARAT and TANIGUCHI: EVALUATION OF A PROCESS SCHEDULING POLICY FOR A WWW SERVER
1755

available (i.e., in the ready state) are placed on a ready
queue, whereas processes that are blocked awaiting an
event (i.e., in the wait state) are located on a sleep
queue associated with the event. When a process is
blocked awaiting an event to happen, if the resources
(e.g., a hard disk) needed for the event are being used
by any other process, then that process needs to wait
first for those resources to become available. Next, that
process needs to wait again for the operation (e.g., in-
put/output) it initiated to be completed. By reduc-
ing the time waiting for the processor to become avail-
able in the ready queue or for the resource needed for
an event to become available in the sleep queue, we
can achieve an enhanced response time. According to
this, we proposed the process scheduling policy that
when a processor (a hard disk or a network communi-
cation) becomes bottlenecked, any WWW server pro-
cess handling an HTML file will be moved to the head
of the ready queue (sleep queue associated with the
event) [22]. Note that the bottleneck of the processor
mentioned in this paper is the situation in which the
processor is busy and there is more than one process
waiting in the ready queue.

When we discussed the process control mechanism
that implements the above policy focused on the bot-
tleneck of the processor, we had two problems: how
to detect which processes are WWW server processes
handling HTML files, and how to operate the ready
queue.

To answer these questions we found that we needed
to look at the detailed execution behavior of a WWW
server. We analyzed the behavior of WWW server pro-
cesses based on PFS and found out that any WWW
server process handling an HTML file has 2 character-
istics: it runs after waiting for a long time in the wait
state (characteristic 1) and it tends to cycle between run
state and wait state a number of times but fewer times
than that of WWW server process handling an Image
file (characteristic 2).

To deal with the fist problem, we introduced two
parameters into our process control mechanism in or-
der to determine which processes are WWW server
processes handling HTML files: long wait threshold
(its value is denoted by SLP) and run state/wait state
threshold (its value is denoted by RW). If the time spent
by a process in the wait state before moving to the run
state is more than SLP, and the number of times the
process changes between run state and wait state is
less than RW, then we determine that it is a WWW
server process handling an HTML file. By these two
parameters, we can detect which process appears to be
a WWW server process handling an HTML file.

To deal with the second problem, our process con-
trol mechanism puts any process that has characteristic
1 at the head of ready queue and moves that process
to the back of the ready queue when that process loses
characteristic 2. The reason processes that lose charac-

teristic 2 are moved to the back of the ready queue is
that sometimes WWW server processes handling Image
files are mistaken as WWW server processes handling
HTML files because they exhibit characteristic 1.

How to predict and update SLP: We analyzed the
execution behavior of a WWW server based on PFS
and found that a WWW server process handling an
HTML file is the process that waits for a request from
a browser. The time it waits for a request is relatively
long. Therefore, the longest time of each WWW server
process in the wait state is determined from PFS for
each period, then SLP for the next time period is set
to the smallest of these values. SLP is updated every
time period.

How to predict and update RW: We analyzed the
execution behavior of a WWW server based on PFS
and found that the number of times a WWW server
process changes between run state and wait state is
proportional to the size of the files they handle (i.e.,
HTML file or Image file). Since HTML files are gen-
erally smaller than Image files, the number of times a
WWW server process handling an HTML file changes
between run state and wait state is smaller than that of
a WWW server process handling an Image file. There-
fore, the smallest number of times each WWW server
process changes between run state and wait state is de-
termined from PFS for each period, then RW for the
next time period is set to the greatest of these values.
RW is updated every time period.

We also note that it can be thought that our
scheduling policy is similar to the preemptive shortest
job first policy (i.e., the waiting process with the small-
est estimated processing time is run next) due to the
operation of moving WWW server processes handling
HTML files, whose processing time is also proportion
to the size of the files they handle, to the head of the
ready queue. However, the point of POS idea-based
scheduling policies is that the decision of which pro-
cess to run next is performed based on the behavior of
processes which is not limited to which process has the
shortest processing time.

4. Measures of Performance

In this section, we present experiments designed to eval-
uate the effectiveness of our scheduling mechanism. We
start with a description of the experimental setup, and
proceed to present the results of experiments.

4.1 Experimental Setup

Our scheduling mechanism is implemented in BSD/OS
version 2.1. The software used for the WWW server
and the browser in our experiment was Apache version
1.2.5 and Netscape Navigator version 3.04 respectively.
The WWW server ran on a personal computer with
a 233MHz AMD-K6 processor and 64MB of memory,



1756
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.9 SEPTEMBER 2000

while browsers ran on three personal computers, each
with a 200MHz Intel Pentium Pro processor and 64MB
of memory. All machines were running on BSD/OS
version 2.1 and were connected by a private 10Mb/s
Ethernet. All our experiments were conducted in sin-
gle user mode, and the operating system’s I/O buffer
cache in the server machine and each browser’s cache
were disabled during the experiments in order to see
the effect of our scheduling mechanism clearly.

The WWW server was accessed by three browsers
from each of the three machines simultaneously. All
browsers accessed unique URLs all of which have the
same content. In three different experiments in which
we varied RW in the range from 1 to 10, we mea-
sured the time (t1) from requesting a WWW page until
text data starts displaying and the time (t2) from re-
questing a WWW page until image data displays com-
pletely for each access, and then found the average of
the 5 trial times of t1 (response time of text data) and
t2 (response time of image data). In experiment 1,
all the browsers accessed the WWW server simulta-
neously every 30 seconds when the WWW server coex-
isted with a processor-bound process and SLP was fixed
at 20 seconds. The purpose of this experiment is to
know how the response time of text data would be im-
proved in the situation that is the best for our schedul-
ing mechanism (i.e., the processor of the server ma-
chine is bottlenecked [caused by a coexisting processor-
bound process] and accesses from browsers are set in
such a way that SLP will be predicted 100% correctly).
In experiment 2, all the browsers accessed the WWW
server randomly at the same time and SLP was fixed
at 20 seconds, while in experiment 3, SLP was pre-
dicted and updated automatically based on PFS ev-
ery 500milliseconds. There was no processor-bound
process in experiments 2 and 3. The purpose of ex-
periments 2 and 3 is to know how in a more realistic
situation (i.e., no processor-bound process coexists and
accesses from browsers are random) the response time
of text data would be improved when SLP was fixed
and when SLP dynamically varies according to the ex-
ecution behavior of the WWW server.

4.2 Experimental Results

Figure 2 shows some examples of the results of ex-
periment 1, when not using and using our schedul-
ing mechanism (RW = 3,6,9). We used a conventional
priority-based timesharing mechanism when not using
ours. Figure 2 plots the URLs in numerical sequence on
the y-axis against the response time of text data to a
request in seconds. Figure 2 shows that the minimum
and the maximum response times when RW = 3,6,9
are better than when not using our scheduling mecha-
nism. This implies that the range or the variance of re-
sponse times becomes narrower when using our schedul-
ing mechanism. In addition, Fig. 2 also shows that by

Fig. 2 Examples of the response time of text data in
experiment 1.

using our scheduling mechanism, the extreme values of
response times such as the case when URL = 1,10,11
are pressed down.

In order to make the experimental results easier
to understand and discuss, we put all the data shown
in Fig. 2 into one graph as shown in Fig. 3 (a). Fig-
ure 3 (a) illustrates the minimum, the maximum, the
mean, the median and the range of response times of



SURANAUWARAT and TANIGUCHI: EVALUATION OF A PROCESS SCHEDULING POLICY FOR A WWW SERVER
1757

(a) Response time of text data

(b) Response time of image data

Fig. 3 The effect of our scheduling mechanism in experiment 1.

text data to a request in seconds. Note that the median
values are calculated directly from t1, since it can be
skewed if we calculate it from the response times shown
in Fig. 2, which are the average of the 5 trial times of t1.
This figure shows that the mean response times of text
data when RW = 3,6,9 are improved 33.8%, 21.3% and
26.6% respectively, while the median response times are
improved 44.7%, 22.8% and 37.7% respectively. These
figures are calculated by a−b

a × 100% where a and b are
the mean or the median response times when not using
and using our scheduling mechanism respectively. This
case produced the most improvement of the response
time of text data, because the coexisting processor-
bound process always caused the processor to become
bottlenecked and the WWW server processes waiting
for HTML file requests from browsers were always in
the wait state at least 30 seconds which was more than
SLP (20 seconds).

The rest of the experimental results will be shown
like Fig. 3 (a).

Figure 3 (b) illustrates the minimum, the maxi-
mum, the mean, the median, and the range of response
times of image data to a request in seconds. This figure
shows that the minimum, the mean and the median re-
sponse times when RW = 3,6,9 are not as fast as when
not using our scheduling mechanism, even though they
are close in some cases. This is expected and is due
to our policy of giving processes handling HTML files
priority over all other processes including WWW server
processes handling Image files.

Figures 4 and 5 show respectively the results of

(a) Response time of text data

(b) Response time of image data

Fig. 4 The effect of our scheduling mechanism in experiment 2.

(a) Response time of text data

(b) Response time of image data

Fig. 5 The effect of our scheduling mechanism in experiment 3.

experiments 2 and 3 when not using and using our
scheduling mechanism (RW = 3,6,9). Figures 4 (a) and
5 (a) illustrate the minimum, the maximum, the mean,
the median and the range of response times of text data
to a request in seconds. In Fig. 4 (a), we did not notice



1758
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.9 SEPTEMBER 2000

any consistent improvement when using our scheduling
mechanism, even though the mean and the median re-
sponse time of text data when RW = 9 is faster than
when not using it. On the other hand, in Fig. 5 (a),
although the minimum response times for RW = 6 are
not better than when not using our scheduling mecha-
nism, the extreme values of response times are pressed
down. The mean response times of text data when RW
= 3,6,9 are improved 22.2%, 17.9% and 6.7% respec-
tively, while the median response times are improved
44.6%, 13.0% and 19.3% respectively.

Even though a processor-bound process causing
the bottleneck of the server machine does not coexist
in Fig. 5 (a), our scheduling mechanism still produces a
good improvement. This might imply that a lot of si-
multaneous accesses from browsers could cause the pro-
cessor of the server machine to become bottlenecked.
From now on, our explanations about experiments 2
and 3 will be done on the supposition that a lot of si-
multaneous accesses from browsers cause the processor
of the server machine to become bottlenecked.

The only difference between experiments 2 and
3 is the way SLP was set. In experiment 2, the re-
sults of response times of text data shown in Fig. 4 (a)
indicate that the WWW server processes waiting for
HTML file requests from browsers might not be in the
wait state more than SLP, because SLP was fixed at
20 seconds while browsers accessed the WWW server
randomly. On the other hand, the improvement of re-
sponse times of text data in experiment 3 shown in
Fig. 5 (a) means that SLP is accurately predicted and
updated by our scheduling mechanism based on the ex-
ecution behavior of the WWW server, because SLP is
predicted and updated automatically based on PFS ev-
ery 500milliseconds.

Figures 4 (b) and 5 (b) illustrate the minimum, the
maximum, the mean, the median, and the range of re-
sponse times of image data to a request in seconds re-
spectively. In Fig. 4 (b), the mean and the median re-
sponse times of image data are improved. This could
be because sometimes WWW server processes handling
Image files were mistaken as WWW server processes
handling HTML files when they were in the wait state
more than SLP (20 seconds). In Fig. 5 (b), the mean
response times of image data when RW = 3,6,9 are not
so different from when not using our scheduling mech-
anism, while the median response times are smaller;
which means the number of small response times are
increased when using our scheduling mechanism.

When WWW server process handling Image files
are in the wait state more than SLP (i.e., when they are
in the wait state for a long time), our scheduling mech-
anism will distinguish them from WWW server pro-
cesses handling HTML files, by comparing the number
of times they change between run state and wait state
with RW. These WWW server processes handling Im-
age files will be treat as WWW server processes han-

dling HTML files until the number of times they change
between run state and wait state is more than RW.
Therefore, the closer RW is set to the number of times
WWW server process handling HTML files actually
change between run state and wait state, the less ben-
efit the WWW server processes handling Image files in
the case mentioned above will take from being treated
as WWW server processes handling HTML files. This
requires that RW also be predicted and updated au-
tomatically based on PFS, which is part of our future
work. We examined the PFS and found out that the
number of times a WWW server process handling an
HTML file changes between run state and wait state
was about three or four. That’s why, in Fig. 3 (a) and
Fig. 5 (a), our scheduling mechanism produces the best
improvement when RW = 3 and the improvement de-
clined when RW was higher.

Summarize experimental results pertaining to re-
sponse time of text data: The results of experiment 1
show that the mean and the median response times of
text data are improved greatly (up to 33.8% and 44.7%
respectively when RW = 3) when the processor of the
server machine is bottlenecked which is the condition
that our mechanism favors and SLP is predicted 100%
correctly. The results of experiment 2 shows that the
mean and the median response times of text data are
not improved at all when SLP is fixed, while those of
text data in experiment 3 are improved (up to 22.2%
and 44.6% respectively when RW = 3) when SLP is
predicted and updated based on PFS. In experiment
3, even though a processor-bound process causing the
bottleneck of the server machine does not coexist, our
scheduling mechanism still produces a good improve-
ment. This might imply that a lot of simultaneous ac-
cesses from browsers could cause the processor of the
server machine to become bottlenecked. If this suppo-
sition is true, then the improvement in experiment 3
means that SLP is accurately predicted and updated
by our scheduling mechanism based on the execution
behavior of the WWW server, because the only differ-
ence between experiments 2 and 3 is the way SLP was
set.

4.3 Processor Load

In order to prove our supposition about experiment 3,
we decided to find the relation between the number of
simultaneous accesses and the response time, and the
relation between the number of simultaneous accesses
and the processor load (PL) or the length of ready
queue (LRQ) by setting up experiment 4. PL shows
if the processor is in use or not and LRQ indicates the
number of processes which are ready to run but are
waiting in the ready queue for the processor to become
available. If the processor is in use and the length of the
ready queue is not zero, then there is some contention
for the processor and a bottleneck exists.



SURANAUWARAT and TANIGUCHI: EVALUATION OF A PROCESS SCHEDULING POLICY FOR A WWW SERVER
1759

Fig. 6 The relation between the number of simultaneous
accesses and the processor load or the length of ready queue.

Fig. 7 The relation between the number of simultaneous
accesses and the response time.

In experiment 4, we varied the number of client
machines from 1 to 4 in which each machine has the
same specification described in Sect. 4.1 and runs three
browsers, we measured the response times of text data,
PL and LRQ of the server machine under the same con-
ditions as in experiment 3. PL is measured by check-
ing if the processor is busy (i.e., in use) or idle every
10milliseconds. If the processor is busy, PL is incre-
mented. The PL ratio is the ratio of PL when the
number of client machines is 1,2,3 and 4 to PL when
the number of client machines is 1. LRQ is determined
by the summation of the total number of processes in
the ready queue every 10milliseconds. The LRQ ratio
is the ratio of LRQ when the number of machines is
1,2,3 and 4 to LRQ when the number of machines is 1.

The results of experiment 4 are shown in Figs. 6
and 7. Figure 6 plots the PL ratio (1:2.52:3.54:5.44) and
the LRQ ratio (1:2.46:3.54:8). These ratios show that
PL and LRQ increased at almost the same rate except
when the number of simultaneous accesses is 12. Fig-
ure 6 shows that the more simultaneous accesses there
are, the more PL and LRQ will increase. Therefore, a
lot of simultaneous accesses cause the processor to be-
come busy or bottlenecked and also increase LRQ. Fig-
ure 7 shows the mean response times of text data while
not using our scheduling mechanism, using our schedul-
ing mechanism for RW = 3,6,9 and when our mecha-

nism produced the best result. Figure 7 shows that
the more simultaneous accesses there are, the worse re-
sponse time will be. Due to our policy of moving any
server process handling an HTML file to the head of the
ready queue when the processor becomes bottlenecked,
which in this experiment is caused by the simultaneous
accesses as indicated by the PL and the LRQ ratios in
Fig. 6, the mean response times when using our schedul-
ing mechanism shown in Fig. 7 are always better than
when not using it. And this is the reason for the im-
provement in experiment 3.

In addition, in Fig. 7, the best mean response
times, when the number of simultaneous accesses is
3,6,9 and 12, are improved 65.7%, 44.4%, 24.2% and
22.3% respectively. Although the percentage of im-
provement declined as the increase in the number of
simultaneous accesses caused PL to increase, the real
time improvement was greater. In addition, the effect
of PL on the improvement dropped significantly when
the number of simultaneous accesses was 12, by that
point LRQ was increasing at a higher rate than PL.
And this could be the result of our scheduling policy’s
manipulation on the ready queue.

Over time, the WWW server in these experiments
was not busy. However, when thinking about the short
period of time that the WWW server was accessed by
a number of browsers at the same time, it was busy
which is indicated by the PL and the LRQ ratios shown
in Fig. 6. According to the experimental results shown
in Fig. 7, any WWW server which experiences a lot of
simultaneous accesses from browsers would benefit from
our scheduling mechanism.

5. Conclusions

Since the control over processor allocation is based on a
fixed policy which is determined by the utilization of a
computer system, not based on contents or behavior of
processes, this can hinder an effective use of a processor
or can extend the processing time of a process unnec-
essarily in some cases. Therefore, we proposed the idea
called POS (Program Oriented Schedule). The idea of
POS is by increasing operating system ability to alter
the execution behavior of a program according to the
predicted behavior from the previous execution(s), the
operating system could optimize the execution behavior
of the program allowing user requirements, such as per-
formance enhancement, to be satisfied without making
any changes to the existing program. We have already
applied this idea to the process scheduler and proposed
a process scheduling policy for improving the response
time of a WWW server. We have also evaluated this
policy experimentally in simple cases for the purpose
of verifying that our scheduling mechanism works as
expected.

In this paper, we evaluated the effectiveness of our
proposed process scheduling policy by measuring the



1760
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.9 SEPTEMBER 2000

response time of a WWW server when it is accessed
by a lot of browsers simultaneously, which could be
the situation in which it is most desirable to improve
the response time of a WWW server. Our experimen-
tal results show that the mean response times are im-
proved greatly up to 33.8% in the best case in which the
processor of the server machine is bottlenecked caused
by a coexisting processor-bound process and accesses
from browsers are set in such a way that the schedul-
ing parameter SLP will be predicted 100% correctly.
In a more realistic case in which no processor-bound
process coexists and accesses from browsers are ran-
dom, our scheduling mechanism still produces a good
improvement of up to 22.2% when the scheduling pa-
rameter SLP is predicted and updated automatically by
our scheduling mechanism based on the predicted exe-
cution behavior of the WWW server, called PFS. PFS
is created and updated by our scheduling mechanism
from the previous execution(s) of the WWW server.
Due to the fact that a lot of simultaneous accesses
cause the processor of the server machine to become
bottlenecked and increase the length of ready queue,
this improvement indicates that the scheduling param-
eter SLP is accurately predicted and updated by our
scheduling mechanism based on the execution behav-
ior of the WWW server. Therefore, any WWW server
which experiences a lot of simultaneous accesses from
browsers would benefit from our scheduling mechanism.

Future work is required to measure the perfor-
mance of a WWW server when the scheduling parame-
ter RW is automatically predicted and updated by our
scheduling mechanism and also when both scheduling
parameter SLP and RW are automatically predicted
and updated by our scheduling mechanism.

Acknowledgement

We would like to thank James Michael Perry for his
assistance in proofreading this paper.

References

[1] J. Xu and D.L. Parnas, “On satisfying timing constraints
in hard-real-time systems,” IEEE Trans. Software Eng.,
vol.19, no.1, pp.70–84, Jan. 1993.

[2] K. Ramamritham, J.A. Stankovic, and P. Shiah, “Effi-
cient scheduling algorithms for real-time multiprocessor sys-
tems,” IEEE Trans. Parallel & Dist. Systems, vol.1, no.2,
pp.184–194, April 1990.

[3] T. Shepard and J.A.M. Gagné, “A pre-run-time scheduling
algorithm for hard real-time systems,” IEEE Trans. Soft-
ware Eng., vol.17, no.7, pp.669–677, July 1991.

[4] K. Schwan and H. Zhou, “Dynamic scheduling of hard real-
time tasks and real-time threads,” IEEE Trans. Software
Eng., vol.18, no.8, pp.736–748, Aug. 1992.

[5] W.K. Shih, J.W.S. Liu, and C.L. Liu, “Modified rate-
monotonic algorithm for scheduling periodic jobs with de-
ferred deadlines,” IEEE Trans. Software Eng., vol.19, no.12,
pp.1171–1179, Dec. 1993.

[6] M.G. Härbour, M.H. Klein, and J.P. Lehoczky, “Timing

analysis for fixed-priority scheduling of hard real-time sys-
tems,” IEEE Trans. Software Eng., vol.20, no.1, pp.13–28,
Jan. 1994.

[7] A. Burns, K. Tindell, and A. Wellings, “Effective analysis
for engineering real-time fixed priority schedulers,” IEEE
Trans. Software Eng., vol.21, no.5, pp.475–479, May 1995.

[8] W. Feng and J.W.S. Liu, “Algorithms for scheduling real-
time tasks with input error and end-to-end deadlines,”
IEEE Trans. Software Eng., vol.23, no.2, pp.93–106, Feb.
1997.

[9] C.W. Mercer, S. Savage, and H. Tokuda, “Processor ca-
pacity reserves for multimedia operating systems,” Techni-
cal Report CMU-CS-93-157, School of Computer Science,
Carnegie Mellon University, May 1993.

[10] C.A. Waldspurger and W.E. Weihl, “Lottery scheduling:
Flexible scheduling proportional-share resource manage-
ment,” Proc. 1st USENIX Symposium on Operating Sys-
tems Design and Implementation, pp.1–11, Nov. 1994.

[11] C.A. Waldspurger and W.E. Weihl, “Stride scheduling:
Deterministic proportional-share resource management,”
Technical Report MIT/LCS/TM-528, MIT Laboratory for
Computers Science, June 1995.

[12] M.B. Jones, D. Rosu, and M.-C. Rosu, “CPU reservations
and time constraints: Efficient, predictable scheduling of
independent activities,” Proc. 16th ACM Symposium on
Operating Systems Principles, pp.198–211, Oct. 1997.

[13] D.B. Golub, “Operating system support for coexistence of
real-time and conventional scheduling,” Technical Report
CMU-CS-94-212, School of Computer Science, Carnegie
Mellon University, Nov. 1994.

[14] B. Ford and S. Susarla, “CPU inheritance scheduling,”
Proc. 2nd USENIX Symposium on Operating Systems De-
sign and Implementation, pp.91–106, Oct. 1996.

[15] P. Goyal, X. Guo, and H.M. Vin, “A hierarchical CPU
scheduler for multimedia operating systems,” Proc. 2nd
USENIX Symposium on Operating Systems Design and Im-
plementation, pp.107–121, Oct. 1996.

[16] Y. Kwok and I. Ahmad, “Dynamic critical-path scheduling:
An effective technique for allocating task graphs to multi-
processors,” IEEE Trans. Parallel & Dist. Systems, vol.7,
no.5, pp.506–521, May 1996.

[17] H. Wang, A. Nicolau, and K.S. Siu, “The strict time lower
bound and optimal schedules for parallel prefix with re-
source constraints,” IEEE Trans. Comput., vol.45, no.11,
pp.1257–1271, Nov. 1996.

[18] M. Wu and W. Shu, “On parallelization of static schedul-
ing algorithms,” IEEE Trans. Software Eng., vol.23, no.8,
pp.517–528, Aug. 1997.

[19] H. Taniguchi, “POS: Program oriented schedule,” IPS
Japan Proc. Computer System Symposium’96, vol.96, no.7,
pp.123–130, 1996.

[20] http://www.microsoft.com/Windows98/guide/Win98/Fea-
tures/Faster.asp

[21] http://www.microsoft.com/Windows98/usingwindows/ma-
intaining/articles/811Nov/MNTfoundation2a.asp

[22] S. Suranauwarat and H. Taniguchi, “Process scheduling
policy for a WWW server based on its contents,” Trans.
IPS Japan, vol.40, no.6, pp.2510–2522, June 1999.

[23] M.F. Kaashoek, D.R. Engler, G.R. Ganger, H.M. Bricenõ,
R. Hunt, D. Mazierès, T. Pinckney, R. Grimm, J. Jannotti,
and K. Mackenzie, “Application performance and flexibil-
ity on exokernel systems,” Proc. 16th ACM Symposium on
Operating Systems Principles, pp.52–65, 1997.



SURANAUWARAT and TANIGUCHI: EVALUATION OF A PROCESS SCHEDULING POLICY FOR A WWW SERVER
1761

Sukanya Suranauwarat received the
B.S. and M.S. degrees in computer science
from Kyushu University, Japan, in 1997
and 1999, respectively. Presently, work-
ing toward a doctor’s degree in the Grad-
uate School of Information Science and
Electrical Engineering at Kyushu Univer-
sity. Her research interests include oper-
ating systems and distributed processing.

Hideo Taniguchi received the B.E.
degree in 1978, the M.E. degree in 1980,
and the Ph.D. degree in computer science
in 1991, all from the Kyushu University,
Fukuoka, Japan. In 1980, he joined NTT
Electrical Communication Laboratories.
In 1988, he moved Research and Develop-
ment headquarters, NTT DATA Commu-
nications Systems Corporation. He had
been an Associate Professor of Computer
Science at Kyushu University since 1993.

He has been an Associate Professor of Graduate School of Infor-
mation Science and Electrical Engineering at Kyushu University
since 1996. His research interests include operating system and
distributed processing. He is a member of the Information Pro-
cessing Society of Japan and ACM.


