TR 5

63 [0 (Vpk 13 12 H1) EFERE

1—69

2L—6

Evaluation of a Process’ Behavior-based

Sukanya Suranauwarat

Disk Scheduling Policy for a WWW Server

Hideo Taniguchi

Graduate School of Information Science and Electrical Engineering, Kyushu University

1 Introduction
As the demand placed on WWW (World Wide Web)

servers grows, the number of simultaneous requests
they must handle increases. As a result, users see
slower response times during periods of high demand of
WWW requests. In other words, it takes a longer time
for the first data to display on browsers, the text data
stored in an HTML (HyperText Markup Language)
file, to start displaying when servers are accessed by
This situation could
be one in which it is most desirable to improve the

many requests simultaneously.

response time and this can be achieved by scheduling
We
have proposed a disk scheduling policy for improving
response time of a WWW serverl]. This policy gives
preferential use of the disk drive to any process that is

resources more efficiently in operating systems.

predicted based on its behavior to be a server process
handling an HTML file request, by moving its I/O re-
quests to the head of the I/O queue. In this paper, we
present the experimental evaluation of our proposed
disk scheduling policy with regard to the number of
simultaneous requests from browsers.

2 Overview

This section gives a brief overview of how our disk
scheduler detects which processes are server processes
handling HTML file requests and how our disk sched-
uler operates the 1/0 queue, in order to provide suffi-
cient understanding to the rest of the paper. A more
detail about these can be found in [1].

2.1 How To Detect The Object Processes

We first need to know what a server process han-
dling an HTML file request is like. So, we analyzed
the execution behavior of a WWW server and found
that any server process handling an HTML file request
has two characteristics: after waiting for a long time
in the wait state (characteristic 1), it tends to cycle
between run state and wait state a number of times
but fewer times than that of a server process handling
other types of file request (characteristic 2).

Next, we introduced two parameters into our sched-
uler in order to determine which processes have the
above two characteristics: long wait threshold (its value
is denoted by SLP) and run state/wait state threshold
(its value is denoted by RW). If the time spent by

a process 1n the wait state is more than SLP, and the
number of times the process changes between run state
and wait state is less than RW, then we determine that
it 1s a server process handling an HTML file request.
By these two parameters, we can detect which process
appears to be a server process handling an HTML file
request. SLP and RW are automatically predicted and
updated every time period based on the execution be-
havior information of each server process called PFS
(Program Flow Sequence). PFS is a sequence of en-
tries describing process state and time spent. PFS of
each server process is created and updated every time
period based on the log we collected when the WWW
server is running. A log is a sequence of entries de-
scribing process identifier, process state and time.

2.2 How To Operate The I/0 Queue

Our scheduler puts any I/O request from any pro-
cess that has characteristic 1 at the head of the 1/O
queue; and when that process loses characteristic 2, its
I/O requests will be scheduled normally, i.e., its [/O
requests will be put into the I/O queue using a routine
provided by the operating system, which in our case is
the disksort routine. Disksort enters I/O requests into
the queue in a cyclic, ascending, cylinder order.

3 Experimental Evaluation
3.1 Experimental Setup

Our disk scheduler is implemented in BSD/OS 2.1.
The server and client software used in our experiment
were Apache 1.2.5. and Netscape Navigator 3.04 re-
spectively. The server machine was a 233MHz AMD-
Ké PC, with 64MB of memory, running our modified
version of BSD/OS 2.1. The client machines were
200MHz Pentium Pro PCs, with 64MB of memory,
running BSD/OS 2.1. All the machines were connected
by a private 10 Mb/s Ethernet. Also, the experiment
was conducted in single user mode, and the operating
system’s I/O buffer cache in the server machine as well
as each browser’s cache were disabled during the ex-
periment, in order to clearly see the effect of our disk
scheduler.

In our experiment, we varied the number of client
machines from 1 to 4, and from each machine we set
three browsers to access the WWW server randomly
at the same time. All browsers accessed unique URLs

1—70

4 T 7
(a) Response time of text data

Response time (sec)
[*]

% disksort
-a— our scheduler

0 :)
3 6 9 2
Number of accesses
10 T T

(b) Response time of image data

)

o 8T

w2

=z

5]

E ¢f

]

1721

g 4r

o

o

& Y 2 wx disksort i

-e— our scheduler
o . .
3 6 9 12
Number of accesses
Fig.1. The experimental results when the

WWW server is accessed by multiple browsers

randomly at the same time.

(URL — Uniform Resource Locator) all of which have
the same content, an HTML file (1,772 bytes) and an
[mage file (43,770 bytes). For each URL, we measured
the 6 trial times of timel and time2. Timel is the
time from requesting a WWW page until text data
starts displaying. Time2 is the time from requesting a
WWW page until image data displays completely. We
will refer to the averages of 5 trial times of timel and
time2 as response time of text data and response time
of image data respectively. During the experiment,
SLP and RW were automatically predicted and up-
lated based on PFS every 500 milliseconds. And our
orevious work!?] has already showed that SLP and RW
are effectively predicted and updated by our scheduler.

3.2 Experimental Results

Figure 1 shows the mean response times of text data
and image data from all URLs when using our disk
scheduler and when using disksort.

In Fig. 1(a), we did not notice the effect of our disk
scheduler when the number of accesses is small (i.e.,
less than 6). This could be because our scheduler only
moves a server process handling an HTML file request
to the head of the I/O queue when the disk drive is
bottlenecked, and this barely occurs when the number
of accesses is small. For example, when the number of
accesses is 3, the percentage of disk bottleneck is only
3% according to the content of the I/O queue we logged

during the experiment. On the other hand, Figure
1(a) shows that when thé number of accesses increases
(i.e., more than 6), our disk scheduler produces a good
improvement. To be more specific, the response times
of text data when the number of accesses is 9 and 12
are improved 19% and 11% respectively. These figures
are calculated by aa;b x 100% where a and b are the
mean response times of text data when using disksort
and when using our scheduler respectively. The good
improvements when the number of accesses is 9 and
12 agree with their high values in the percentage of
disk bottleneck, which is about 6 times of that when
the number of accesses is 3, according to the content
of the I/O queue we logged during the experiment.

However, care must be taken to ensure that the re-
sulting unfairness due to our policy of giving favorable
treatment to sever processes handling HTML file re-
quests, does not outweigh the performance gains ob-
tained. In our experiment, as shown in Fig. 1(b), the
mean response times of image data when using our
scheduler is not so different from when using disksort.
Accordingly, response time of image data pays a small
penalty under our scheduler.

Therefore, any WWW server that experiences a lot
of simultaneous accesses from users would benefit from
our disk scheduler.

4 Conclusion

This paper examined the performance of a WWW
server with regard to the number of simultaneous re-
quests from browsers, when using the proposed disk
scheduler. And our experimental result when the WWW
server is accessed randomly by multiple requests at the
same time shows that by using our disk scheduler the
response time of text data, the time from requesting a
WWW page until text data starts displaying, can be
reduced. Moreover, the effect of unfairness due to our
policy of giving favorable treatment to sever processes
handling HTML file requests on the response times of
other types of data, which in our case is image data,
is relatively small. Therefore, any WWW server that
experiences a lot of simultaneous requests from users
would benefit from our disk scheduler.

References

[1] S. Suranauwarat and H. Taniguchi, “The implemen-
tation and evaluation of a disk scheduling policy for
a WWW server based on its contents,” IPSJ Trans.,
vol.42, no.6, pp.1472-1482, 2001. (in Japanese)

[2] S. Suranauwarat and H. Taniguchi, “Operating sys-
tems support for the evolution of software: an eval-
vation using WWW server software,” In Proc. of the
2000 International Symposium on Principles of Soft-
ware Fvolution, pp.289-298, 2000.

