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Abstract: Conventional process schedulers in operating systems control the sharing of the CPU
resources among processes using a fixed scheduling policy, in which the utilization of a computer
system (e.g., a real-time or a time-sharing system) is a major concern rather than content or
behavior of a process. As a result, the CPU resource is likely to be used in an inefficient manner,
or the processing time of a process may be extended unnecessarily. Therefore, we proposed a
process’ behavior-based scheduler in oder to reduce the processing time and the process switch-
ing cost. More specifically, our scheduler allows a process to continue its execution even though
its time-slice has already expired, when it is predicted from an advanced knowledge called PFS
(Program Flow Sequence) that the process needs a little bit more CPU time before it voluntar-
ily relinquishes the CPU. In this paper, we present the experimental evaluation of our proposed

scheduler.
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1. Introduction

4) in operat-

Conventional process schedulers!) ™
ing systems control the sharing of the CPU re-
sources among processes using a fixed scheduling
policy based on the utilization of a computer sys-
tem such as a real-time or a time-sharing system.
Since the control over the allocation of the CPU
resource is not based on content or behavior of a
process, this can hinder an effective use of a CPU
resource or can extend the processing time of a pro-
cess unnecessarily. For example, in a time-sharing
system, when a process uses up its time-slice just
before it initiates an 1/O operation, it will volun-
tarily relinquishes the CPU (i.e., the process blocks
itself pending the completion of the I/O operation)
immediately after the beginning of its next time-
slice. If we had predicted the behavior of the process
and delayed process switching according to the pre-
dicted behavior allowing the process to continue its
execution until it initiated an 1/O operation, then
the processing time of the process and the process
switching cost could have been reduced.

Therefore, we have proposed a process’ behavior-
based scheduler that allows a process to continue its
execution even though its time-slice has already ex-
pired, when it is predicted from an advanced knowl-
edge called PFS (Program Flow Sequence) that the
process needs a little bit more CPU time before
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The PFS

of each program is created based on the behavior

it voluntarily relinquishes the CPU 9.

of its corresponding process at the end of the first
execution, and it is used whenever the program is
executed from then on. It is also adjusted based
on the feedback obtained from each execution. We
have also implemented the proposed scheduler in
BSD/OS 2.1 and evaluated it in simple cases such
as the overhead involved in our scheduler ®. In this
paper, we examine the performance of existing pro-
grams when using our scheduler with regard to the
length of the time to delay process switching, and
the effect on the processing time of adjusting the ex-
isting PFS to changes when existing programs are
executed a number of times.

2. Overview

In this section, we will briefly describe our sched-

uler ¥

in order to provide sufficient understanding
to the rest of the paper.

When a program is executed, if its PFS does not
exist then our scheduler will record the execution
behavior of the corresponding process in terms of
process identifier and process state (i.e., run, ready,
and wait states). And based on this log, the PFS of
the program is created at the end of the execution.
A PFS is composed of the program name and a se-
quence of its process information, i.e., a sequence of
entries describing process state and time spent. We
will refer to each time spent in run state as a CPU
time of PFS (7).

If the PFS of the program exists, then the decision
about whether process switching should be delayed
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or not is determined based on PFS by our sched-
uler as follows, whenever the corresponding process
is running at the end of its time-slice.

o If T, — (C. — Cs) < T, then the process is

allowed to continue using the CPU.

o If T, — (C. — C5) > Tp,, then the next waiting

process is dispatched.

where C, is the current time, C is the time that a
process starts using the CPU for each allocated por-
tion of CPU, T, is the expected CPU time a process
would use from C; until it voluntarily relinquishes
the CPU (each 7. is determined based on each CPU
time of PFS (7)) and T, is the maximum time
to delay process switching called the mazimum dis-
patch delay time.

In other words, whenever a process is running at
the end of its time-slice, if the expected CPU time
the process would use from now until it voluntarily
relinquishes the CPU is smaller than the maximum
dispatch delay time (7, ), then we allow the process
to continue using the CPU instead of dispatching
the next waiting process. We note that setting the
T arbitrarily will cause the management of pro-
cess switching to become complex, so we enforce the
rule that 7T},, must be a multiple of timeslot where
timeslot is the minimum unit of time that process
switching can be delayed.

In addtion, our scheduler adjusts PFS to changes
based on the feedback obtained from each execu-
tion, since the execution behavior of a program is
not always the same every time the program is exe-
cuted. However, adjusting PFS to the latest change
is dangerous when the corresponding process runs
abnormally. So our scheduler adjusts each CPU
time of PFS (i.e., 7)) slightly by multiplying the dif-
ference between the CPU time that a corresponding
process actually spends before it voluntarily relin-
quishes the CPU and 7}, with a constant (called an
increase or a decrease scaling factor) as shown in
the following.

o If T, = (C. — (), then the adjustment is not

needed.

o If T, < (C. —C,), then T, should be increased

by using the following rule:
Ty = Tp +{(Cc = C5) = T, } x (2/100), (1)

o If T, > (C. — Cj), then T, should be reduced

by using the following rule:

Ty = Tp = {T, — (Cc = C4)} x (y/100),  (2)
where z is an increase scaling factor (%) and y is a
decrease scaling factor (%).

3. Experimental Evaluation

In this section, we present several experiments
designed to evaluate the effectiveness of our sched-
uler, which is implemented as a modification to the
BSD/OS 2.1 kernel. We performed two set of exper-
iments: 1) experiments with a test program, and 2)
experiments with existing programs. We chose gzip,
merge, and sort as the examples of the existing pro-
grams. Gzip is useful for backing-up or transferring
large files while merge and sort are used a lot in
database systems. The following is describing each
program in detail.

A test program is a program that loops 20
times through work A and work B. Work A incre-
ments an integer variable by one for the amount of
time specified by the argument sent to the program.
Work B goes to sleep in the wait state for a fixed
time of 1 s (second). We will refer to the process of
the test program as the test process.

Gzip is a fast and efficient file compression pro-
gram distributed by the GNU project. When com-
pressing files, one of the options —1,—2, .. .through
—9 can be used to specify the speed and quality of
the compression used. In our experiments, we ran
gzip as “gzip -2 file1”; file1 contains 200,000 number
of integers which are generated by library function
called rand().

Merge is a useful program for combining all
changes or differences into one file. In our ex-
periments, we ran merge as “merge outputfile file2
file3”| resulting all differences that lead from file2
to filed into outputfile are incorporated. File2 and
filed contain 100,000 number of integers which are
generated by rand().

Sort is a text file sorting program. It sorts text
files by lines and outputs the results in the stan-
dard output or in the file specified by option —o. In
our experiments, we ran sort as “sort file2 file3 —o
outputfile”; file2 and file3 has the same contents as
mentioned above.

The purpose of the first set of experiments is to
verify that our scheduler works as expected, i.e., it
delays process switching as expected, and it adjusts
an existing PFS to changes as expected. The pur-
pose of the second set of experiments is to exam-
ine the performance of the existing programs when
their corresponding processes are scheduled using
our scheduler. More specifically, we examined the
processing time of each existing program with re-
gard to the length of the maximum dispatch delay
time, and the effect on the processing time of adjust-
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ing the existing PFS to changes when each program
is executed a number of times.

All our experiments were run on a 120 MHz Pen-
tium with 32 MB of memory, running our modified
version of BSD/OS 2.1. Also, all experiments were
conducted in single user mode with the preemption
enabled, and timeslot and time-slice are 1 and 100
ms (milliseconds) respectively. In order to enable
process switching when a given time-slice expires,
we also ran a CPU intensive program called loop
program, in every experiments. Loop program is a
program that increments an integer variable by one
in an infinite loop. We will refer to the process of
the loop program as the loop process.

3.1 Test Program

3.1.1 Delay Process Switching

In order to verify that our scheduler can delay
process switching as expected, we measured the pro-
cessing time of the test program when the length of
the maximum dispatch delay time was varied as 0,
10, 40, and 70. In this experiment, the argument of
the test program was given as 75, 125, 150 and 200
ms. Figure 1 shows the experimental results plot-
ted with the processing time on y-axis normalized
by the processing time when using a conventional
time-sharing scheduler. This figure shows that when
the required CPU time is more than the time-slice
(100 ms) and its difference is smaller than the max-
imum dispatch delay time, then the processing time
when using our scheduler becomes shorter. For ex-
ample, when the required CPU time is 125 ms and
the maximum dispatch delay time is 40 ms, and
when the required CPU time is 125 and 150 ms and
the maximum dispatch delay time is 70 ms. Ac-
cording to the results, our scheduler delays process
switching as expected.

3.1.2 Adjusting An Existing PFS

In order to verify that our scheduler can adapt
an existing PFS to changes as expected, we exe-
cuted the test program with its initial PFS different
from its actual execution behavior for 20 times and
measured the processing time for each execution.
Figure 2 shows the relation between the number of
executions and the processing time, when the maxi-
mum dispatch delay time is 20 ms while the increase
(z) and the decrease (y) scaling factors are both var-
ied from 10%, 20% and 30%. Figures 2(a) and (b)
show the experimental results when we ran the test
program with its argument given as 310 and 110 ms
respectively. The initial PFS was created when we
ran the test program with its argument given as 210
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Fig.1 The relation between the length of the maximum
dispatch delay time and the processing time when
the argument to the test program is given as 75,
125, 150, and 200 ms.
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Fig.2 The effect of adjusting the PFS of the test pro-

gram to changes on its processing time.

ms. Also, the processing time in Fig. 2 is normal-
ized to the processing time when the initial PFS of
the test program is the same as the actual execu-
tion behavior. Note that during each execution of
the test program, CPU time of the PFS is adjusted
when the test process goes to sleep 1 s in the wait
state.

During the first execution, when the test process
with its argument specifying the amount of time
for work A as 310 ms is running at the end of its
second time-slice, the CPU time it actually needs
before going to sleep 1 s becomes 110 ms, which is
more than the maximum dispatch delay time (20
ms). On the other hand, the expected CPU time



-182— S. SURANAUWARAT and H. TANIGUCHI

@
100 ms
time-dice — {9 ms delay
| N I B B B E |
loop process —  — 1000 ms
test process -
510 ms
100ms 100 msde (b)
time-slice —_ o msdedy
I T T T T T
loop process —  — __ 1000 ms
test process — 10ms
510 ms
(©
. . 100 ms
time-slice —
I T T T T
loop process — — 1000 ms
test process - 10 ms
610 ms

Fig.3 The execution behavior of a test process for work
A of each loop when (a) the initial PFS is the
same as the actual execution behavior, (b) the
number of times the program is executed is small
and (c) the CPU time of the initial PFS is ad-

justed and becomes more than 220 ms.

based on the initial PFS (10 ms) is less than the
maximum dispatch delay time (20 ms). Therefore,
the initial PFS is adjusted by using (1). That is
each CPU time of the initial PFS is increased by
using the increase scaling factor. And as the num-
ber of executions becomes bigger, it finally becomes
close to 310 ms. The experimental results shown in
Fig. 2(a) are discussed in more detail.

When the number of times the program is
executed is small, for example, at the end of the
second time-slice of the first execution of the test
process, the expected CPU time based on PFS for
work A of each loop is 10 ms, which is less than
the maximum dispatch delay time (20 ms). As a
result, the test process is allowed to continue using
the CPU instead of dispatching it to the loop pro-
cess. After using up 100 ms more of the CPU time,
the expected CPU time based on PFS becomes less
than zero causing the CPU to be dispatched to the
loop processTl. According to this, the processing
time of the test process when the initial PFS is the
same as the actual execution behavior and when it
is different are the same as shown in Figs. 3(a) and
(b). Therefore, the processing time at the first ex-
ecution in Fig. 2(a) is one.

t1 According to our implementation described in 5), the
next waiting process is also dispatched when the expected

CPU time is less than zero.

As the number of times the program is exe-
cuted increases, each CPU time of the initial
PFS is adjusted and becomes more than 220
ms. Therefore, when the test process is running at
the end of its second time-slice, the expected CPU
time based on PFS for each loop is more than 20 ms,
which is more than the maximum dispatch delay
time (20 ms). As a result, the CPU is dispatched to
the loop process. Moreover, at the end of its third
time-slice, the expected CPU time based on PFS
becomes less than zero causing the CPU to be dis-
patched to the loop process as shown in Fig. 3(c),
while the test process with the initial PFS the same
as the actual execution behavior is allowed to con-
tinue using the CPU for 10 more ms as shown in
Fig. 3(a). According to this, the processing time
of the test process when the initial PFS is different
from the actual execution behavior becomes bigger.
Therefore, the processing time in this case is more
than one as shown in Fig. 2(a). In addition, Fig-
ure 2(a) shows that the bigger the increase scaling
factor is, the faster each CPU time of PFS becomes
more than 220 ms. For example, when the number
of executions is two, the processing times with the
increase scaling factors of 20% and 30% are more
than one, while the one with the increase scaling
factor of 10% is still about one.

As the number of times the program is ex-
ecuted increases more, each CPU time of the
initial PFS is adjusted and becomes close to
310 ms. Therefore, when the test process is run-
ning at the end of its third time-slice, the expected
CPU time based on PFS for each loop is less than
20 ms, which is also less than the maximum dis-
patch delay time (20 ms). As a result, the test pro-
cess is allowed to continue using the CPU instead
of dispatching it to the loop process. According to
this, the processing time of the test process when
the initial PFS is the same as the actual execution
behavior and when it is different become the same.
Therefore, the processing time in this case becomes
one again as shown in Fig. 2(a). In addition, Fig-
ure 2(a) shows that the bigger the increase scaling
factor is, the faster each CPU time of PFS becomes
close to 310 ms. For example, when the number
of executions is more than 13, the processing times
with the increase scaling factors of 20% and 30%
become one again, while the one with the increase
scaling factor of 10% is still more than one.

In the same way, the experimental results shown
in Fig. 2(b) can be explained. In brief, during the
first execution, when the test process with its ar-
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gument specifying the amount of time for work A
as 110 ms is running at the end of its first time-
slice, the CPU time it actually needs before going
to sleep 1 s becomes 10 ms while the expected CPU
time based on the initial PFS is 110 ms (which is
bigger). Therefore, the initial PFS is adjusted by
using (2). That is each CPU time of the initial PFS
is decreased by using the decrease scaling factor.
And as the number of executions becomes bigger, it
finally becomes close to 110 ms.

According to the experimental results, our sched-
uler adjusts an existing PFS to changes as expected.

3.2 Existing Programs
3.2.1 The Length of The Maximum Dis-
patch Delay Time vs. Processing
Time
We ran the three existing programs one at a time
and found the relation between the length of the
maximum dispatch delay time and the processing
time of the process of each program. Figure4
shows the experimental results plotted with the pro-
cessing time on y-axis normalized by the processing
time when using a conventional time-sharing sched-
uler (TSS). For reference, we also show the time
used to create PFS in Fig. 4. Also, Table 1 shows,
according to PFS, the number of times the CPU and
the T/O resources are obtained by each program in-
cluding time used. Note that the number of times
the T/O resource is obtained is shown in parenthesis.
Also, the total time used to execute gzip, merge and
sort programs are 15, 105 and 19 s respectively. The
experimental results shown in Fig. 4 are discussed
in more detail.
In case of gzip: Table 1 shows that the to-
tal number of dispatches and the total number of
times the CPU resource is obtained by the gzip are

Tm=0r
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The effect of the maximum dispatch delay time on the processing time (gzip, merge and sort).

Table 1  The resource usage of gzip, merge and sort
analyzed based on PFS.

) number of times CPU (I/0O)
used time .

resources were obtained

(ms) gzip merge sort,
under 10 11 (2) 5 (0) 54 ( 5)
10 to under 20 5(5) 0 (0) 43 ( 26)
20 to under 30 0(7) 0 (1) 12 ( 33)
30 to under 40 0 (15) 1(1) 19 ( 33)
40 to under 50 | 0 (11) | 0 (0) 7 (23)
50 to under 60 0(7) 0 (0) 1 (16)
60 to under 70 1(4) 0 (0) 3(2)
70 to under 80 | 11 ( 1) 0 (0) 0( 0)
80 to under 90 | 0 (0) | 0(0) 0( 4
90 to under 100| 0 ( 0) 0(1) 1( 4)
over 100 25 (1) 1(4) 16 ( 10)
total | 53 (53) | 7 (7) | 156 (156)

106 and 53 respectively. Out of the total number of
times the CPU resource is obtained, about 50% (25
times) of the time it used more CPU time than the
time-slice (100 ms). When the required CPU time
is more than the time-slice (100 ms), by using our
scheduler, the processing time becomes smaller as
the length of the maximum dispatch delay time is
increased. For example, the processing time when
the maximum dispatch delay time is 20 and 60 ms,
is improved 4.2% and 7.8% respectively. Therefore,
our scheduler makes a noticeable improvement.

In case of merge: Table 1 shows that the to-
tal number of dispatches and the total number of
times the CPU resource is obtained by the merge
are 14 and 7 respectively. Out of the total num-
ber of times the CPU resource is obtained, only one
time did it use more CPU time than the time-slice
(100 ms). As a result, the processing time when
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using our scheduling is almost the same as when
not using it, regardless of how much the length of
the maximum dispatch delay time is increased. For
example, the processing time when the maximum
dispatch delay time is 60 ms is improved only 0.5%.
Therefore, the effect of our scheduler is relatively
small in this case.

Table 1 shows that the to-
tal number of dispatches and the total number of
times the CPU resource is obtained by the sort are
312 and 156 respectively. Out of the total number
of times the CPU resource is obtained, only 10%
(16 times) of the time it used CPU time more than
the time-slice (100 ms). However, the processing

In case of sort:

time becomes smaller as the length of the maximum
dispatch delay time is increased. For example, the
processing time when the maximum dispatch delay
time is 60 ms is improved 3.0%. In this case also,
our scheduler makes a noticeable improvement.

3.2.2 Adjusting An Existing PFS vs. The

Processing Time

We varied the number of executions of each pro-
gram from 1 to 10 and observed the effect on the
processing time of adjusting the existing PFS. Fig-
ure 5 shows the relation between the number of ex-
ecutions and processing time, when the maximum
dispatch delay time is 20 while the increase (x) and
the decrease (y) scaling factors are both varied from
10%, 20% and 30%. For comparison, we also show
the results when the maximum dispatch delay time
and the increase and the decrease scaling factors are
zero. In addition, the processing time in Fig. 5 is
normalized to the processing time of the first execu-
tion. Note that during each execution of the existing
programs, CPU time of the PFS is adjusted when
the processes of the existing programs are blocked
for an I/O operation to be completed in the wait
state.

In Fig. 5, there is a trend that the processing time

The effect of adjusting the existing PFS to changes on the processing time (gzip, merge and sort).

of the process of gzip program will decrease as the
number of executions becomes larger, while we did
not notice this kind of trend for the merge and the
sort programs. This shows that adjusting the PFS
of the three existing programs has very little or no
effect on the processing time.

4. Conclusions

In this paper, we evaluated the effectiveness of
Our re-
sults with the test program show that our sched-

our proposed scheduler experimentally.

uler works as expected. That is, it delays process
switching and adjusts an existing PFS to changes
as expected. Also, the results with the existing pro-
grams (i.e., gzip, merge, and sort) show that the
processing time of the corresponding process of each
program can be reduced by using our scheduler.
Some of our future work will include evaluating
the effectiveness of our scheduler with other existing
programs, and implementing early process switch-

Ing.
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